ÌâÄ¿ÄÚÈÝ
3£®ÈçͼËùʾ£¬¿í¶ÈΪLµÄ´Ö²ÚƽÐнðÊôµ¼¹ìPQºÍP¡äQ¡äÇãб·ÅÖ㬶¥¶ËQQ¡äÖ®¼äÁ¬½ÓÒ»¸ö×èֵΪRµÄµç×èºÍ¿ª¹ØS£¬µ×¶ËPP¡ä´¦ÓëһС¶Îˮƽ¹ìµÀÓù⻬Բ»¡ÏàÁ¬£®ÒÑÖªµ×¶ËPP¡äÀëµØÃæµÄ¸ß¶ÈΪh£¬Çãбµ¼¹ì´¦ÔÚ´¹Ö±ÓÚµ¼¹ìƽÃæµÄÔÈÇ¿´Å³¡£¨Í¼ÖÐδ»³ö£©ÖУ®Èô¶Ï¿ª¿ª¹ØS£¬½«Ò»¸ùÖÊÁ¿Îªm¡¢µç×èΪr¡¢³¤ÎªLµÄ½ðÊô°ô´ÓAA¡ä´¦¾²Ö¹¿ªÊ¼»¬Ï£¬½ðÊô°ôÂäµØµãÀëPP¡äµÄˮƽ¾àÀëΪx1£»Èô±ÕºÏ¿ª¹ØS£¬½«½ðÊô°ôÈÔ´ÓAA¡ä´¦¾²Ö¹¿ªÊ¼»¬Ï£¬Ôò½ðÊô°ôÂäµØµãÀëPP¡äµÄˮƽ¾àÀëΪx2£®²»¼Æµ¼¹ìµç×裬ºöÂÔ½ðÊô°ô¾¹ýPP¡ä´¦µÄÄÜÁ¿Ëðʧ£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£¬Ç󣺣¨1£©¿ª¹Ø¶Ï¿ªÊ±£¬½ðÊô°ôÀ뿪µ×¶ËPP¡äµÄËٶȴóС£»
£¨2£©±È½ÏÇ°ºóÁ½´Î½ðÊô°ôÓëµ¼¹ìĦ²Á²úÉúµÄÈÈÁ¿´óС£»
£¨3£©¿ª¹Ø±ÕºÏʱ£¬½ðÊô°ôÔÚÏ»¬¹ý³ÌÖвúÉúµÄ½¹¶úÈÈ£®
·ÖÎö £¨1£©½ðÊô°ôÀ뿪µ×¶ËPP¡äºó£¬×öƽÅ×Ô˶¯£¬ÒÑ֪ˮƽ¾àÀëºÍ¸ß¶È£¬¸ù¾ÝƽÅ×Ô˶¯µÄ֪ʶ£¬¿ÉÒÔÇó³ö°ô¿ªµ×¶ËPP¡äµÄËٶȴóС£»
£¨2£©½ðÊô°ôÓëµ¼¹ìĦ²Á²úÉúµÄÈÈÁ¿µÈÓÚ¿Ë·þĦ²ÁÁ¦×ö¹¦£®Óɹ¦ÄܹØϵ½â´ð£®
£¨3£©¿ª¹Ø±ÕºÏºó£¬½ðÊô°ôÏ»¬Ê±£¬ÐèÒª¿Ë·þ°²ÅàÁ¦×ö¹¦²úÉú½¹¶úÈÈ£¬¸ù¾ÝÄÜÁ¿Êغ㶨ÂÉÇó½â£®
½â´ð ½â£º£¨1£©¿ª¹Ø¶Ï¿ªÊ±£¬½ðÊô°ôÀ뿪µ×¶ËPP¡äµÄËٶȴóСΪv1£¬ÔÚ¿ÕÖÐÔ˶¯µÄʱ¼äΪt£¬Ôò£º
x1=v1t
h=$\frac{1}{2}$gt2£»
¿ÉµÃ£ºv1=x1$\sqrt{\frac{g}{2h}}$
£¨2£©½ðÊô°ôÓëµ¼¹ìĦ²Á²úÉúµÄÈÈÁ¿µÈÓÚ¿Ë·þĦ²ÁÁ¦×ö¹¦£¬Ç°ºóÁ½´Î½ðÊô°ôËùÊܵĻ¬¶¯Ä¦²ÁÁ¦²»±ä£¬Í¨¹ýµÄλÒƲ»±ä£¬¿Ë·þĦ²ÁÁ¦×ö¹¦ÏàµÈ£¬ËùÒÔÇ°ºóÁ½´Î½ðÊô°ôÓëµ¼¹ìĦ²Á²úÉúµÄÈÈÁ¿ÏàµÈ£®
£¨3£©¿ª¹Ø¶Ï¿ªÊ±£¬ÔÚ½ðÊô°ôÑØÇãбµ¼¹ìÏ»¬µÄ¹ý³ÌÖУ¬ÖØÁ¦×ö¹¦ÎªWG£¬Ä¦²ÁÁ¦×ö¹¦ÎªWf£®
¸ù¾Ý¶¯Äܶ¨Àí£ºWG+WF=$\frac{1}{2}m{v}_{1}^{2}$
¿ª¹Ø±ÕºÏʱ£¬½ðÊô°ôÀ뿪µ×¶ËPP¡äµÄËٶȣºv2=x2$\sqrt{\frac{g}{2h}}$
ÔÚ½ðÊô°ôÑØÇãбµ¼¹ìÏ»¬µÄ¹ý³ÌÖУ¬ÖØÁ¦×ö¹¦ºÍĦ²ÁÁ¦×ö¹¦Ó뿪¹Ø¶Ï¿ªÊ±Ïàͬ£¬°²ÅàÁ¦×ö¹¦ÎªW°²£¬ÏµÍ³²úÉúµÄ½¹¶úÈÈΪQ£¬
Óɶ¯Äܶ¨Àí¿ÉµÃ£ºWG+Wf+W°²=$\frac{1}{2}m{v}_{2}^{2}$
ÓÖÒòΪQ=|W°²|
½ðÊô°ô²úÉúµÄ½¹¶úÈÈ Qr=$\frac{r}{R+r}$Q
ÁªÁ¢ÉÏÊö·½³Ì¿ÉµÃ£ºQr=$\frac{r}{R+r}$•$\frac{mg}{4h}$£¨${x}_{1}^{2}-{x}_{2}^{2}$ £©£®
´ð£º£¨1£©¿ª¹Ø¶Ï¿ªÊ±£¬½ðÊô°ôÀ뿪µ×¶ËPP¡äµÄËٶȴóСÊÇx1$\sqrt{\frac{g}{2h}}$£»
£¨2£©Ç°ºóÁ½´Î½ðÊô°ôÓëµ¼¹ìĦ²Á²úÉúµÄÈÈÁ¿´óСÏàµÈ£»
£¨3£©¿ª¹Ø±ÕºÏʱ£¬½ðÊô°ôÔÚÏ»¬¹ý³ÌÖвúÉúµÄ½¹¶úÈÈÊÇ$\frac{r}{R+r}$•$\frac{mg}{4h}$£¨${x}_{1}^{2}-{x}_{2}^{2}$ £©£®
µãÆÀ ±¾ÌâÊ×ÏÈÒªÕÆÎÕƽÅ×Ô˶¯µÄÑо¿·½·¨£¬Æä´ÎÄÜÔËÓÃÄÜÁ¿Êغ㶨ÂÉÇó½âÈÈÁ¿£¬¶¼Êdz£ÓõÄ˼·£¬Æ½Ê±Òª¶à¼ÓÇ¿Õâ·½ÃæµÄÁ·Ï°£¬ÊìÁ·ÕÆÎÕ£®
A£® | µØÃæÉϵÄÈË¿´µ½·É»ú·É¹ý£¬ÊÇÒÔµØÃæΪ²Î¿¼Ïµ | |
B£® | ·ÉÐÐÔ±¿´µ½¹ÛÀñ̨ÏòºóÂÓ¹ý£¬ÊÇÒÔ·É»úΪ²Î¿¼Ïµ | |
C£® | ÒÔ±à¶ÓÖÐijһ·É»úΪ²Î¿¼Ïµ£¬ÆäËû·É»úÊÇÔ˶¯µÄ | |
D£® | ÒÔ±à¶ÓÖÐijһ·É»úΪ²Î¿¼Ïµ£¬ÆäËû·É»úÊǾ²Ö¹µÄ |
A£® | ÔÚO¡¢A¡¢BÈýµãÖУ¬BµãµçÊÆ×îµÍ | |
B£® | ´øÕýµçµÄÁ£×Ó´ÓBµãÔ˶¯µ½Aµã£¬µç³¡Á¦×öÕý¹¦ | |
C£® | BO¼äµÄµçÊƲî±ÈOA¼äµÄµçÊƲî´ó$\frac{m{{v}_{0}}^{2}}{q}$ | |
D£® | BO¼äµÄµçÊƲî±ÈOA¼äµÄµçÊƲî´ó$\frac{2m{{v}_{0}}^{2}}{q}$ |
A£® | ÏÈͬʱÅ׳öA¡¢BÁ½Çò£¬ÔÙÅ׳öCÇò | B£® | ÏÈͬʱÅ׳öB¡¢CÁ½Çò£¬ÔÙÅ׳öAÇò | ||
C£® | ±ØÐëÂú×ãvA£¾vB£¾vC | D£® | ±ØÐëÂú×ãvA£¼vB£¼vC |
A£® | ´Óxlµ½x3´øµçÁ£×ӵļÓËÙ¶ÈÒ»Ö±Ôö´ó | |
B£® | ´Óx1µ½x3´øµçÁ£×ÓµÄËÙ¶ÈÒ»Ö±¼õС | |
C£® | Á£×ÓÔÚ0-x2¶Î×öÔȱäËÙÔ˶¯£¬x2-x3¶Î×öÔÈËÙÖ±ÏßÔ˶¯ | |
D£® | x1¡¢x2¡¢x3´¦µçÊƦÕ1¡¢¦Õ2¡¢¦Õ3µÄ¹ØϵΪ¦Õ1£¾¦Õ2£¾¦Õ3 |
A£® | $\frac{{I}_{1}}{{U}_{1}}$ | B£® | $\frac{{U}_{1}}{{I}_{1}}$ | C£® | $\frac{{U}_{1}}{{I}_{2}}$ | D£® | $\frac{{U}_{1}}{{I}_{1}-{I}_{2}}$ |