题目内容
如图甲所示,斜面体固定在水平面上,倾角为θ=30°,质量为m的物块从斜面体上由静止释放,以加速度a=开始下滑,取出发点为参考点,则图乙中能正确描述物块的速率v、动能Ek、势能E P、机械能E、时间t、位移x关系的是
ACD
解析试题分析:物体沿斜面匀加速下滑,速率,图象为一条过原点的倾斜直线,A正确;下滑过程中,动能,图象是一条开口向上的抛物线的一部分,而不是直线,B错误;取出发点为参考面,重力势能为,是一条过原点的斜向下的直线,C正确;下滑的过程中,,而加速度,可知,下滑过程中不受摩擦力,机械能守恒,且机械能始终为零,D正确。
考点:动能定理,机械能守恒定律
如图所示,甲、乙两种粗糙面不同的传送带,倾斜放于水平地面,与水平面的夹角相同,以同样恒定速率v向上运动。现将一质量为m的小物体(视为质点)轻轻放在A处,小物体在甲传送带上到达B处时恰好达到速率v;在乙上到达离B竖直高度为h的C处时达到速率v,已知B处离地面高度皆为H。则在物体从A到B过程中
A.小物块在两种传送带上具有的加速度相同 |
B.将小物体传送到B处,两种传送带消耗的电能相等 |
C.两种传送带对小物体做功相等 |
D.将小物体传送到B处,两种系统产生的热量相等 |
如图所示,MPQO为有界的竖直向下的匀强电场,电场强度为E,ACB为光滑固定的半圆形轨道,圆轨道半径为R, AB为圆水平直径的两个端点,AC为圆弧。一个质量为m、带电荷量为 -q的带电小球,从A点正上方高为H处由静止释放,并从A点沿切线进入半圆轨道。不计空气阻力及一切能量损失,关于带电粒子的运动情况,下列说法不正确的是( )
A.小球一定能从B点离开轨道 |
B.小球在AC部分不可能做匀速圆周运动 |
C.若小球能从B点离开,上升的高度一定等于H |
D.小球到达C点的速度不可能为零 |
如图所示,在一个静电场中,负电荷q在外力(非静电力)作用下,由B点运动到A点,以下说法中正确的是(不计重力)( )
A.外力做功等于电荷电势能的减少量与动能的增加量的总和 |
B.外力和电场力做功之和等于电势能增加量与动能的增加量的总和 |
C.电场力所做的正功等于电势能的减少量 |
D.外力所做的功和电场力所做的功之和等于电荷动能的增加量 |
轻质弹簧右端固定在墙上,左端与一质量m=0.5kg的物块相连,如图甲所示。弹簧处于原长状态,物块静止且与水平面间的动摩擦因数=0.2。以物块所在处为原点,水平向右为正方向建立x轴。现对物块施加水平向右的外力F,F随x轴坐标变化的情况如图乙所示。物块运动至x=0.4m处时速度为零。则此时弹簧的弹性势能为(g=10m/S2)
A.3.1 J | B.3.5 J | C.1.8 J | D.2.0J |
如图12所示,π形光滑金属导轨与水平地面倾斜固定,空间有垂直于导轨平面的磁场,将一根质量为m的金属杆ab垂直于导轨放置。金属杆ab从高度h2处从静止释放后,到达高度为h1的位置(图中虚线所示)时,其速度为v,在此过程中,设重力G和磁场力F对杆ab做的功分别为WG和WF,那么
A.mv2/2=mgh1-mgh2 |
B.mv2/2=WG+WF |
C.mv2/2>WG+WF |
D.mv2/2<WG+WF |
如图所示,虚线a、b、c表示电场中的三个等势面与纸平面的交线,且相邻等势面之间的电势差相等.实线为一带正电粒子仅在电场力作用下通过该区域时的运动轨迹,M、N是这条轨迹上的两点.则下面说法中正确的是
A.三个等势面中,a的电势最高 |
B.对于M、N两点,带电粒子通过M点时电势能较大 |
C.对于M、N两点,带电粒子通过N点时动能较大 |
D.带电粒子由M运动到N时,加速度增大 |
如图所示小球沿水平面通过O点进入半径为R的半圆弧轨道后恰能通过最高点P,然后落回水平面.不计一切阻力.下列说法正确的是( )
A.小球落地点离O点的水平距离为2R |
B.小球落地点时的动能为5mgR/2 |
C.小球运动到半圆弧最高点P时向心力恰好为零. |
D.若将半圆弧轨道上部的1/4圆弧截去,其他条件不变,则小球能达到的最大高度比P点高0.5R. |
一个学生用100N的力,将静止在球场上质量为1kg的球,以10m/s的速度踢出20m远,则该学生对球做的功为
A.50J | B.100J | C.1000J | D.2000J |