ÌâÄ¿ÄÚÈÝ
14£®Ä³Í¬Ñ§ÔÚ×ö¡°Ñо¿Æ½Å×ÎïÌåÔ˶¯¡±ÊµÑéʱ£¬·¢ÏÖÔÀ´µÄʵÑé·½·¨²»ÈÝÒ×È·¶¨Æ½Å×СÇòÔÚÔ˶¯ÖеÄ׼ȷλÖã®ÓÚÊÇËû¸Ä½øÁËʵÑé·½·¨£ºÈçͼËùʾ£¬ÔÚʵÑéÖÐÓÃÁËÒ»¿éƽľ°å¸½Éϸ´Ð´Ö½ºÍ°×Ö½£¬ÊúÖ±Á¢ÓÚÕý¶Ô²Û¿Úǰij´¦£¬Ê¹Ð¡Çò´Óб²ÛÉÏÓɾ²Ö¹»¬Ï£¬Ð¡ÇòײÔÚľ°åÉÏÁôϺۼ£A£¬½«Ä¾°åÏòºóÒƾàÀëx£¬ÔÙʹСÇò´Óб²ÛÉÏͬÑù¸ß¶ÈÓɾ²Ö¹»¬Ï£¬Ð¡ÇòײÔÚľ°åÉÏÁôϺۼ£B£¬½«Ä¾°åÔÙÏòºóÒƾàÀëx£¬Ð¡ÇòÔÙ´Óб²ÛÉÏͬÑù¸ß¶ÈÓɾ²Ö¹»¬Ï£¬Ôٵõ½ºÛ¼£C£¬ÒÑÖªA¡¢B¼ä¾àÀëy1£¬A¡¢C¼ä¾àÀëy2£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£¨1£©µ¼³ö²âÁ¿Ð¡Çò³õËٶȹ«Ê½vo=$x\sqrt{\frac{g}{{{y_2}-2{y_1}}}}$£¨ÓÃÌâÖÐËù¸ø×Öĸ£©£®
£¨2£©Èô²âµÃľ°åºóÒƾàÀëx=10cm£¬²âµÃy1=3.1cm£¬y2=16.0cm£¬g=9.8m/s2СÇò³õËÙ¶ÈֵΪ1.0 m/s
£¨½á¹û±£ÁôÁ½Î»ÓÐЧÊý×Ö£©£®
·ÖÎö ÇòÀ뿪µ¼¹ìºó×öƽÅ×Ô˶¯£¬½«Æ½Å×Ô˶¯·Ö½âΪˮƽ·½ÏòµÄÔÈËÙÖ±ÏßÔ˶¯ºÍÊúÖ±·½ÏòµÄ×ÔÓÉÂäÌåÔ˶¯£®¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ¡÷x=aT2£¬ÓÉy1¡¢y2Çó³öAµ½B»òBµ½CµÄʱ¼ä£¬ÔÙÇó³ö³õËٶȣ®
½â´ð ½â£º£¨1£©¸ù¾ÝƽÅ×ÎïÌåˮƽ·½ÏòÔÈËÙÔ˶¯¿ÉÖª£ºAµ½BºÍBµ½CµÄʱ¼äÏàͬ£¬ÉèΪT£¬Òò´Ë¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯¹æÂÉÓУº
¡÷h=£¨y2-y1£©-y1=y2-2y1=gT2£¬
ËùÒÔÓУºT=$\sqrt{\frac{{y}_{2}-2{y}_{1}}{g}}$£®
ˮƽ·½ÏòÔÈËÙÔ˶¯£¬Òò´ËÓУº
v0=$\frac{x}{T}$=x$\sqrt{\frac{g}{{y}_{2}-2{y}_{1}}}$
£¨2£©x=10cm=0.1m£¬²âµÃy1=6.0cm=0.06m£¬y2=17.0cm=0.17m£¬´øÈëÊý¾Ý½âµÃ£º
v0=x$\sqrt{\frac{g}{{y}_{2}-2{y}_{1}}}$=0.1¡Á$\sqrt{\frac{9.8}{0.16-2¡Á0.031}}$=1.0m/s£®
¹Ê´ð°¸Îª£º£¨1£©$x\sqrt{\frac{g}{{{y_2}-2{y_1}}}}$£¬£¨2£©1.0£®
µãÆÀ ½â´ðƽÅ×Ô˶¯ÎÊÌâµÄ¹Ø¼üÊÇÀí½âÆäˮƽ·½ÏòºÍÊúÖ±·½ÏòµÄÔ˶¯Ìص㣺ˮƽ·½ÏòÔÈËÙÔ˶¯£¬ÊúÖ±·½Ïò×ÔÓÉÂäÌåÔ˶¯£¬Í¬Ê±ÊìÁ·Ó¦ÓÃÔȱäËÙÖ±ÏßÔ˶¯µÄ»ù±¾¹æÂɺÍÍÆÂÛ½â´ðÎÊÌ⣮
A£® | ÖʵãÔÚÊúÖ±·½ÏòÕñ¶¯µÄ²¨Îªºá²¨ | |
B£® | ²¨ÔÚˮƽ·½Ïò´«²¥µÄ²¨Îªºá²¨ | |
C£® | Ö»ÓÐÖʵãÕñ¶¯·½ÏòΪÊúÖ±µÄ£¬²¨µÄ´«²¥·½ÏòΪˮƽµÄ²¨Îªºá²¨ | |
D£® | Ö»ÒªÖʵãÕñ¶¯·½ÏòºÍ²¨µÄ´«²¥·½Ïò´¹Ö±µÄ²¨Îªºá²¨ |
A£® | Ea£¾Eb£¾Ec£¬¦Õa£¾¦Õb£¾¦Õc | B£® | Ea=Eb£¾Ec£¬¦Õa=¦Õb£¾¦Õc | ||
C£® | Ea=Eb=Ec£¬¦Õa=¦Õb=¦Õc | D£® | Ea£¾Ec£¾Eb£¬¦Õa£¾¦Õb£¾¦Õc |
A£® | ÎïÌåÊܺ㶨µÄºÏÍâÁ¦×÷ÓÃʱ£¬Ò»¶¨×öÔȱäËÙÖ±ÏßÔ˶¯ | |
B£® | ÎïÌåÊܵ½±ä»¯µÄºÏÍâÁ¦×÷ÓÃʱ£¬ËüµÄÔ˶¯ËٶȴóСһ¶¨·¢Éú±ä»¯ | |
C£® | ÎïÌå×÷Ô²ÖÜÔ˶¯Ê±£¬ºÏÍâÁ¦·½ÏòÒ»¶¨Ö¸ÏòÔ²ÐÄ | |
D£® | ËùÓÐ×÷ÇúÏßÔ˶¯µÄÎïÌ壬ËüËùÊܵĺÏÍâÁ¦Ò»¶¨Óë˲ʱËٶȲ»ÔÚͬһֱÏßÉÏ |
A£® | ÔÚt1ºÍt3ʱ¿Ì¾ßÓÐÏàͬµÄËÙ¶È | B£® | ÔÚt3ºÍt4ʱ¿Ì¾ßÓÐÏàͬµÄλÒÆ | ||
C£® | ÔÚt4ºÍt6ʱ¿Ì¾ßÓÐÏàͬµÄ¶¯ÄÜ | D£® | ÔÚt1ºÍt6ʱ¿Ì¾ßÓÐÏàͬµÄ¼ÓËÙ¶È |
A£® | $\frac{\sqrt{2}kQq}{4{R}^{2}}$£¬·½ÏòÏòÉÏ | B£® | $\frac{kQq}{{R}^{2}}$£¬·½ÏòÏòÉÏ | ||
C£® | $\frac{kQq}{4{R}^{2}}$£¬·½ÏòˮƽÏò×ó | D£® | ²»ÄÜÈ·¶¨ |