ÌâÄ¿ÄÚÈÝ
19£®Ò»¸ö¹ú¼ÊÑо¿Ð¡×é½èÖúÓÚÖÇÀû³¬´óÍûÔ¶¾µ£¬¹Û²âµ½ÁËÒ»×éË«ÐÇϵͳ£¬ËüÃÇÈÆÁ½ÕßÁ¬ÏßÉϵÄijµãO×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÈçͼËùʾ£®´ËË«ÐÇϵͳÖÐÌå»ý½ÏС³ÉÔ±ÄÜ¡°Îüʳ¡±ÁíÒ»¿ÅÌå»ý½Ï´óÐÇÌå±íÃæÎïÖÊ£¬´ïµ½ÖÊÁ¿×ªÒƵÄÄ¿µÄ£¬¼ÙÉèÔÚÑݱäµÄ¹ý³ÌÖÐÁ½ÕßÇòÐÄÖ®¼äµÄ¾àÀë±£³Ö²»±ä£¬Ñݱä³õÆÚÌå»ý½Ï´óÐÇÌåµÄÖÊÁ¿½Ï´ó£¬ÔòÔÚ×î³õÑݱäµÄ¹ý³ÌÖÐÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©A£® | Ìå»ý½Ï´óÐÇÌåÔ²ÖÜÔ˶¯¹ì¼£°ë¾¶±ä´ó£¬ÏßËÙ¶ÈÒ²±ä´ó | |
B£® | Ìå»ý½Ï´óÐÇÌåÔ²ÖÜÔ˶¯¹ì¼£°ë¾¶±ä´ó£¬ÏßËٶȱäС | |
C£® | ËüÃÇ×öÔ²ÖÜÔ˶¯µÄÍòÓÐÒýÁ¦²»¶Ï¸Ä±ä | |
D£® | ËüÃÇ×öÔ²ÖÜÔ˶¯µÄÍòÓÐÒýÁ¦±£³Ö²»±ä |
·ÖÎö Ë«ÐÇÈÆÁ½ÕßÁ¬ÏßµÄÒ»µã×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÓÉÏ໥֮¼äÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÍòÓÐÒýÁ¦¶¨ÂÉ¡¢Å£¶ÙµÚ¶þ¶¨ÂɺÍÏòÐÄÁ¦½øÐзÖÎö£®
½â´ð ½â£ºAB¡¢ÉèÌå»ý½ÏСµÄÐÇÌåÖÊÁ¿Îªm1£¬¹ìµÀ°ë¾¶Îªr1£¬Ìå»ý´óµÄÐÇÌåÖÊÁ¿Îªm2£¬¹ìµÀ°ë¾¶Îªr2£®Ë«ÐǼäµÄ¾àÀëΪL£®×ªÒƵÄÖÊÁ¿Îª¡÷m£»
¶Ôm1£ºG$\frac{£¨{m}_{1}+¡÷m£©£¨{m}_{2}-¡÷m£©}{{L}^{2}}$=£¨m1+¡÷m£©¦Ø2r1 ¢Ù
¶Ôm2£ºG$\frac{£¨{m}_{1}+¡÷m£©£¨{m}_{2}-¡÷m£©}{{L}^{2}}$=£¨m2-¡÷m£©¦Ø2r2 ¢Ú
Óɢ٢ڵ㺦Ø=$\sqrt{\frac{G£¨{m}_{1}+{m}_{2}£©}{{L}^{3}}}$£¬×ÜÖÊÁ¿m1+m2²»±ä£¬Á½Õß¾àÀëL²»±ä£¬Ôò½ÇËٶȦز»±ä£»
$\frac{{r}_{1}}{{r}_{2}}=\frac{{m}_{2}-¡÷m}{{m}_{1}+¡÷m}$
r1+r2=L
¹ÊËæ×Å¡÷mµÄÔö¼Ó£¬Ìå»ý½Ï´óÐÇÌåµÄÖÊÁ¿¼õС£¬Æäת¶¯°ë¾¶Ôö¼Ó£¬¸ù¾Ýv=r¦Ø£¬ÏßËÙ¶ÈÔö¼Ó£»
¹ÊAÕýÈ·£¬B´íÎó£»
CD¡¢Á½¸öÐÇÇòµÄ×ÜÖÊÁ¿Ò»¶¨£¬µ±ËüÃÇÖÊÁ¿ÏàµÈʱ£¬Á½¸öÐÇÇòµÄÖÊÁ¿µÄ³Ë»ý×î´ó£¬¹ÊËüÃÇ×öÔ²ÖÜÔ˶¯µÄÍòÓÐÒýÁ¦ÊÇÔö¼ÓµÄ£¬¹ÊCÕýÈ·£¬D´íÎó£»
¹ÊÑ¡£ºAC
µãÆÀ ±¾ÌâÊÇË«ÐÇÎÊÌ⣬Ҫץס˫ÐÇϵͳµÄÌõ¼þ£º½ÇËÙ¶ÈÓëÖÜÆÚÏàͬ£¬ÔËÓÃÅ£¶ÙµÚ¶þ¶¨ÂɲÉÓøôÀë·¨½øÐÐÑо¿£®
A£® | Å£¶ÙµÚÒ»¶¨ÂÉ | B£® | Å£¶ÙµÚ¶þ¶¨ÂÉ | C£® | Å£¶ÙµÚÈý¶¨ÂÉ | D£® | ÍòÓÐÒýÁ¦¶¨ÂÉ |
A£® | ²¨ËÙΪ4m/s | |
B£® | ²¨³¤Îª6m | |
C£® | ²¨Ô´ÆðÕñ·½ÏòÑØyÖáÕý·½Ïò | |
D£® | 2.0s¡«3.0sÄÚÖʵãaÑØyÖḺ·½ÏòÔ˶¯ | |
E£® | 0¡«3.0sÄÚÖʵãaͨ¹ýµÄ×Ü·³ÌΪ1.4m |
A£® | $\frac{3a}{2¦ÐGR}$ | B£® | $\frac{3a}{4¦ÐGR}$ | C£® | $\frac{3b}{2¦ÐGR}$ | D£® | $\frac{3b}{4¦ÐGR}$ |