题目内容

如图一所示,质量分别为m1=1kg和m2=2kg的A、B两物块并排放在光滑水平面上,若对A、B分别施加大小随时间变化的水平外力F1和F2,其中F1=(9-2t)N,F2=(3+2t)N,请回答下列问题:

(1)A、B两物块在未分离前的加速度是多大?

(2)经多长时间两物块开始分离?

(3)在图二的坐标系中画出两物块的加速度a1和a2随时间变化的图像。

(4)速度的定义为v=△s/△t,“v-t”图像下的“面积”在数值上等于位移△s;加速度的定义为a=△v/△t,则“a-t”图像下的“面积”在数值上应等于什么?

(5)试从加速度a1和a2随时间变化的图像中,求出A、B两物块自分离后,经过2s时的速度大小之差。

 

【答案】

(1)4m/s 2 (2)2.5s  (3)如图

(4)  (5) 6m/s

【解析】

试题分析:(1)对A、B整体,由牛顿第二定律得: F1+F2=(m1+m2)a

解得a=4m/s2

(2))当A、B间的弹力为0时,A、B分离,刚分离时A、B的加速度仍相等,由牛顿第二定律得:

解得t=2.5s

所以经过2.5s两物体分离

(3)即t=0-2.5s内A和B的加速度恒为4m/s2

A、B分离后,

对A:a1=   对B:a2=

(4)由a=△v/△t得△v=a△t,所以“a-t”图像下的“面积”在数值上应等于速度的变化量△v

(5)如下图三角形面积即为速度之差△v==6m/s

考点:本题考查了牛顿第二定律 匀变速直线运动公式

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网