ÌâÄ¿ÄÚÈÝ
13£®Èçͼ¼×Ëùʾ£¬ÀíÏë±äѹÆ÷Ô¡¢¸±ÏßȦµÄÔÑÊý±Èn1£ºn2=4£º1£¬ÔÏßȦ½ÓͼÒÒËùʾµÄÕýÏÒ½»Á÷µç£¬¸±ÏßȦÓëÀíÏëµçѹ±í¡¢ÀíÏëµçÁ÷±í¡¢ÈÈÃôµç×èRT£¨×èÖµËæζȵÄÉý¸ß¶ø¼õС£©¼°±¨¾¯Æ÷P£¨ÓÐÄÚ×裩×é³É±ÕºÏµç·£¬»Ø·ÖеçÁ÷Ôö¼Óµ½Ò»¶¨ÖµÊ±±¨¾¯Æ÷P½«·¢³ö¾¯±¨Éù£¬ÔòÒÔÏÂÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©A£® | ±äѹÆ÷ÔÏßȦÖн»Á÷µçѹµÄ˲ʱ±í´ïʽu=36sin£¨100¦Ðt£© V | |
B£® | µçѹ±íʾÊýΪ9 V | |
C£® | RT´¦Î¶ÈÉý¸ßµ½Ò»¶¨ÖµÊ±£¬±¨¾¯Æ÷P½«»á·¢³ö¾¯±¨Éù | |
D£® | RT´¦Î¶ÈÉý¸ßʱ£¬±äѹÆ÷µÄÊäÈ빦ÂʱäС |
·ÖÎö ÓÉͼÒÒ¿ÉÖª½»Á÷µçѹ×î´óÖµUm=36$\sqrt{2}$V£¬ÖÜÆÚT=0.02s£¬¿ÉÓÉÖÜÆÚÇó³ö½ÇËٶȵÄÖµ£¬Ôò¿ÉµÃ½»Á÷µçѹuµÄ±í´ïʽ u=Umsin¦Øt£¨V£©£¬ÓɱäѹÆ÷ÔÀí¿ÉµÃ±äѹÆ÷Ô¡¢¸±ÏßȦÖеĵçÁ÷Ö®±È£¬ÊäÈë¡¢Êä³ö¹¦ÂÊÖ®±È£¬Rt´¦Î¶ÈÉý¸ßʱ£¬×èÖµ¼õС£¬¸ù¾Ý¸ºÔصç×èµÄ±ä»¯£¬¿ÉÖªµçÁ÷¡¢µçѹ±ä»¯£®
½â´ð ½â£ºA¡¢ÔÏßȦ½ÓµÄͼÒÒËùʾµÄÕýÏÒ½»Á÷µç£¬ÓÉͼ֪×î´óµçѹ36$\sqrt{2}$V£¬ÖÜÆÚ0.02S£¬¹Ê½ÇËÙ¶ÈÊǦØ=100¦Ð£¬u=36$\sqrt{2}$sin100¦Ðt£¨V£©£¬¹ÊA´íÎó£»
B¡¢ÀíÏë±äѹÆ÷Ô¡¢¸±ÏßȦµÄÔÑÊý±Èn1£ºn2=4£º1£¬ËùÒÔ¸±ÏßȦµÄµçѹÊÇU2=9V£¬
ËùÒÔµçѹ±íʾÊýСÓÚ9V£¬¹ÊB´íÎó£»
C¡¢Rt´¦Î¶ÈÉý¸ßʱ¸±ÏßȦÖеçÁ÷Ôö´ó£¬Éý¸ßµ½Ò»¶¨ÖµÊ±£¬±¨¾¯Æ÷P½«»á·¢³ö¾¯±¨Éù£¬¹ÊCÕýÈ·£»
D¡¢Rt´¦Î¶ÈÉý¸ßʱ¸±ÏßȦÖеçÁ÷Ôö´ó£¬¶ø¸±ÏßȦµÄµçѹ²»±ä£¬±äѹÆ÷µÄÊä³ö¹¦Âʱä´ó£¬ÀíÏë±äѹÆ÷µÄÊäÈë¡¢Êä³ö¹¦ÂÊÖ®±ÈΪ1£º1£¬±äѹÆ÷µÄÊäÈ빦Âʱä´ó£¬¹ÊD´íÎó£»
¹ÊÑ¡£ºC£®
µãÆÀ ¸ù¾ÝͼÏó׼ȷÕÒ³öÒÑÖªÁ¿£¬ÊǶÔѧÉúÈÏͼµÄ»ù±¾ÒªÇó£¬×¼È·ÕÆÎÕÀíÏë±äѹÆ÷µÄÌص㼰µçѹ¡¢µçÁ÷±ÈÓëÔÑÊý±ÈµÄ¹Øϵ£¬Êǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
A£® | ³Ë¿ÍËùÊܵ½µÄºÏÍâÁ¦¿ÉÄÜÊúÖ±ÏòÏ | |
B£® | Ö§³ÖÁ¦¿ÉÄÜ´óÓÚÖØÁ¦ | |
C£® | Èô³Ë¿Íδ½Ó´¥×ùÒο¿±³£¬ÔòÓ¦Êܵ½ÏòÇ°£¨Ë®Æ½Ïò×󣩵ÄĦ²ÁÁ¦×÷Óà | |
D£® | ³Ë¿Í´¦ÓÚ³¬ÖØ״̬ |
A£® | ËÙ¶Èv0ËùÈ¡µÄÊʵ±ÖµÓ¦Îª$\frac{mg}{2qB}$ | |
B£® | ¾¹ýt=$\frac{2¦Ðm}{qB}$µÚÒ»´Îµ½´ï°ÚÏß×îµÍµã | |
C£® | ×îµÍµãµÄyÖá×ø±êΪy=$\frac{-{m}^{2}g}{{q}^{2}{B}^{2}}$ | |
D£® | ×îµÍµãµÄËÙ¶ÈΪ2v0 |
A£® | va=vb | B£® | va=$\sqrt{2}$vb | C£® | ta=$\sqrt{2}$tb | D£® | ta=2tb |
A£® | ÎÀÐÇ¡°G1¡±ºÍ¡°G3¡±µÄ¼ÓËٶȴóСÏàµÈÇÒΪ$\frac{{R}^{2}}{{r}^{2}}g$ | |
B£® | Èç¹ûµ÷¶¯¡°¸ß·ÖÒ»ºÅ¡±ÎÀÐÇ¿ìËÙµ½´ïBλÖõÄÏ·½£¬±ØÐë¶ÔÆä¼ÓËÙ | |
C£® | ÎÀÐÇ¡°G1¡±ÓÉλÖÃAÔ˶¯µ½Î»ÖÃBËùÐèµÄʱ¼äΪ$\frac{2¦Ð}{3R}\sqrt{\frac{r}{g}}$ | |
D£® | Èô¡°¸ß·ÖÒ»ºÅ¡±ËùÔڸ߶ȴ¦ÓÐÏ¡±¡ÆøÌ壬ÔòÔËÐÐÒ»¶Îʱ¼äºó£¬»úеÄÜ»áÔö´ó |
A£® | ÔÚ0-t1ʱ¼äÄÚ£®ÀÁ¦F´óСһ¶¨²»¶ÏÔö´ó | |
B£® | ÔÚt1ʱ¿Ì£¬ÀÁ¦FΪÁã | |
C£® | ÔÚt1-t2ʱ¼äÄÚ£¬ÀÁ¦F´óС¿ÉÄܲ»¶Ï¼õС | |
D£® | ÔÚt1-t2ʱ¼äÄÚ£¬ºÏÁ¦×ö¹¦¿ÉÄÜΪÁã |