ÌâÄ¿ÄÚÈÝ
ijͬѧÓÃÈçͼ1ËùʾװÖÃ̽¾¿A¡¢BÁ½ÇòÔÚÅöײÖж¯Á¿ÊÇ·ñÊغ㣮¸ÃͬѧÀûÓÃƽÅ×Ô˶¯²âÁ¿Á½ÇòÅöײǰºóµÄËٶȣ¬ÊµÑé×°Öú;ßÌå×ö·¨ÈçÏ£¬Í¼ÖÐPQÊÇб²Û£¬QRΪˮƽ²Û£®ÊµÑéʱÏÈʹAÇò´Óб²ÛÉÏijһ¹Ì¶¨Î»ÖÃGÓɾ²Ö¹¿ªÊ¼»¬Ï£¬Â䵽λÓÚˮƽµØÃæµÄ¼Ç¼ֽÉÏ£¬ÁôϺۼ££®Öظ´ÉÏÊö²Ù×÷10´Î£¬µÃµ½10¸öÂäµãºÛ¼££®ÔÙ°ÑBÇò·ÅÔÚˮƽ²ÛÉÏ¿¿½ü²ÛÄ©¶ËµÄµØ·½£¬ÈÃAÇòÈÔ´ÓλÖÃGÓɾ²Ö¹¿ªÊ¼»¬Ï£¬ºÍBÇòÅöײºó£¬A¡¢BÇò·Ö±ðÔڼǼֽÉÏÁôϸ÷×ÔµÄÂäµãºÛ¼££®Öظ´ÕâÖÖ²Ù×÷10´Î£¬²¢»³öʵÑéÖÐA¡¢BÁ½Ð¡ÇòÂäµãµÄƽ¾ùλÖã®Í¼ÖÐOµãÊÇˮƽ²ÛÄ©¶ËRÔڼǼֽÉϵĴ¹Ö±Í¶Ó°µã£®ÆäÖÐÃ׳ßˮƽ·ÅÖã¬ÇÒƽÐÐÓÚG¡¢R¡¢OËùÔÚµÄÊúֱƽÃ棬Ã׳ߵÄÁãµãÓëOµã¶ÔÆ룮
£¨1£©ÎªÁËʹÁ½ÇòÅöײΪһάÅöײ£¬ËùÑ¡Á½ÇòµÄÖ±¾¶¹ØϵΪ£ºAÇòµÄÖ±¾¶______BÇòµÄÖ±¾¶£¨¡°´óÓÚ¡±¡¢¡°µÈÓÚ¡±»ò¡°Ð¡ÓÚ¡±£©£»Îª¼õСʵÑéÎó²î£¬ÔÚÁ½ÇòÅöײºóʹAÇò²»·´µ¯£¬ËùÑ¡ÓõÄÁ½Ð¡ÇòÖÊÁ¿¹ØϵӦΪmA______mB£¨Ñ¡ÌСÓÚ¡±¡¢¡°´óÓÚ¡±»ò¡°µÈÓÚ¡±£©£»
£¨2£©ÔÚÒÔÏÂÑ¡ÏîÖУ¬ÄÄЩÊDZ¾´ÎʵÑé±ØÐë½øÐеIJâÁ¿£¿´ð£º______£¨ÌîÑ¡ÏîºÅ£©£®
A£®Ë®Æ½²ÛÉÏδ·ÅBÇòʱ£¬²âÁ¿AÇòÂäµãλÖõ½OµãµÄ¾àÀë
B£®AÇòÓëBÇòÅöײºó£¬²âÁ¿AÇòÓëBÇòÂäµãλÖõ½OµãµÄ¾àÀë
C£®AÇòºÍBÇòÔÚ¿Õ¼ä·ÉÐеÄʱ¼ä
D£®²âÁ¿GµãÏà¶ÔÓÚˮƽ²ÛÃæµÄ¸ß¶È
£¨3£©ÒÑÖªmA£ºmB=2£º1£¬E¡¢F¡¢JÊÇʵÑéÖÐСÇòÂäµãµÄƽ¾ùλÖã¬ÇëÄã¸ù¾Ý¸ÃͬѧʵÑéÖÐËùѡСÇòºÍʵÑéµÄ¼Ç¼ֽÅжϣ¬AÇòûÓÐÅöײBÇòʱµÄÂäµãÊÇ______µã£¨ÔÚE¡¢F¡¢JÈý¸öÂäµãÖÐÑ¡Ì£¬AÇòÓëBÇòÅöײºóAÇòµÄÂäµãÊÇ______µã£¨ÔÚE¡¢F¡¢JÈý¸öÂäµãÖÐÑ¡Ì£®
¸Ãͬѧͨ¹ýʵÑéÊý¾Ý˵Ã÷ÔÚʵÑéÖÐA¡¢BÁ½ÇòÅöײÖж¯Á¿Êغ㣬
ÇëÄãÓÃͼ2ÖеÄ×Öĸд³ö¸ÃͬѧÅж϶¯Á¿ÊغãµÄ±í´ïʽÊÇ______£®
£¨1£©ÎªÁËʹÁ½ÇòÅöײΪһάÅöײ£¬ËùÑ¡Á½ÇòµÄÖ±¾¶¹ØϵΪ£ºAÇòµÄÖ±¾¶______BÇòµÄÖ±¾¶£¨¡°´óÓÚ¡±¡¢¡°µÈÓÚ¡±»ò¡°Ð¡ÓÚ¡±£©£»Îª¼õСʵÑéÎó²î£¬ÔÚÁ½ÇòÅöײºóʹAÇò²»·´µ¯£¬ËùÑ¡ÓõÄÁ½Ð¡ÇòÖÊÁ¿¹ØϵӦΪmA______mB£¨Ñ¡ÌСÓÚ¡±¡¢¡°´óÓÚ¡±»ò¡°µÈÓÚ¡±£©£»
£¨2£©ÔÚÒÔÏÂÑ¡ÏîÖУ¬ÄÄЩÊDZ¾´ÎʵÑé±ØÐë½øÐеIJâÁ¿£¿´ð£º______£¨ÌîÑ¡ÏîºÅ£©£®
A£®Ë®Æ½²ÛÉÏδ·ÅBÇòʱ£¬²âÁ¿AÇòÂäµãλÖõ½OµãµÄ¾àÀë
B£®AÇòÓëBÇòÅöײºó£¬²âÁ¿AÇòÓëBÇòÂäµãλÖõ½OµãµÄ¾àÀë
C£®AÇòºÍBÇòÔÚ¿Õ¼ä·ÉÐеÄʱ¼ä
D£®²âÁ¿GµãÏà¶ÔÓÚˮƽ²ÛÃæµÄ¸ß¶È
£¨3£©ÒÑÖªmA£ºmB=2£º1£¬E¡¢F¡¢JÊÇʵÑéÖÐСÇòÂäµãµÄƽ¾ùλÖã¬ÇëÄã¸ù¾Ý¸ÃͬѧʵÑéÖÐËùѡСÇòºÍʵÑéµÄ¼Ç¼ֽÅжϣ¬AÇòûÓÐÅöײBÇòʱµÄÂäµãÊÇ______µã£¨ÔÚE¡¢F¡¢JÈý¸öÂäµãÖÐÑ¡Ì£¬AÇòÓëBÇòÅöײºóAÇòµÄÂäµãÊÇ______µã£¨ÔÚE¡¢F¡¢JÈý¸öÂäµãÖÐÑ¡Ì£®
¸Ãͬѧͨ¹ýʵÑéÊý¾Ý˵Ã÷ÔÚʵÑéÖÐA¡¢BÁ½ÇòÅöײÖж¯Á¿Êغ㣬
ÇëÄãÓÃͼ2ÖеÄ×Öĸд³ö¸ÃͬѧÅж϶¯Á¿ÊغãµÄ±í´ïʽÊÇ______£®
£¨1£©ÎªÁËʹÁ½ÇòÅöײΪһάÅöײ£¬¼´ÊµÏÖ¶ÔÐÄÅöײ£¬ÔòAÇòµÄÖ±¾¶µÈÓÚBÇòµÄÖ±¾¶£®
ÔÚСÇòÅöײ¹ý³ÌÖÐˮƽ·½Ïò¶¯Á¿Êغ㶨ÂÉ£¬¹ÊÓÐmAv0=mAv1+mBv2
ÔÚÅöײ¹ý³ÌÖж¯ÄÜÊغ㣬¹ÊÓÐ
mAv02=
mAv12+
mBv22
ÁªÁ¢½âµÃv1=
v0£¬ÒªÅöºóÈëÉäСÇòµÄËÙ¶Èv1£¾0£¬¼´mA-mB£¾0£¬¹ÊmA£¾mB£®
£¨2£©¸ù¾Ý¶¯Á¿ÊغãÓУºmAv0=mAv1+mBv2£¬ÒòΪv0=
£¬v1=
£¬v2=
£®ÒòΪʱ¼äÏàͬ£¬¿ÉÒÔÓÃˮƽλÒÆ´úÌæËٶȣ¬ËùÒÔÐèÒª²âÁ¿Ë®Æ½²ÛÉÏδ·ÅBÇòʱ£¬AÇòÂäµãλÖõ½OµãµÄ¾àÀ룬AÇòÓëBÇòÅöײºó£¬AÇòÓëBÇòÂäµãλÖõ½OµãµÄ¾àÀ룮¹ÊA¡¢BÕýÈ·£®
¹ÊÑ¡£ºAB£®
£¨3£©AÇòÓëBÇòÅöºó£¬AÇòµÄËٶȼõС£¬¿ÉÖªAÇòûÓÐÅöײBÇòʱµÄÂäµãÊÇFµã£¬AÇòÓëBÇòÅöײºóAÇòµÄÂäµãÊÇEµã£®ÓÃˮƽλÒÆ´úÌæËٶȣ¬¶¯Á¿ÊغãµÄ±í´ïʽΪ£º
mAOF=mAOE+mBOJ£®
¹Ê´ð°¸Îª£º£¨1£©µÈÓÚ£¬´óÓÚ £¨2£©AB£® £¨3£©F£¬E£¬mAOF=mAOE+mBOJ
ÔÚСÇòÅöײ¹ý³ÌÖÐˮƽ·½Ïò¶¯Á¿Êغ㶨ÂÉ£¬¹ÊÓÐmAv0=mAv1+mBv2
ÔÚÅöײ¹ý³ÌÖж¯ÄÜÊغ㣬¹ÊÓÐ
1 |
2 |
1 |
2 |
1 |
2 |
ÁªÁ¢½âµÃv1=
mA-mB |
mA+mB |
£¨2£©¸ù¾Ý¶¯Á¿ÊغãÓУºmAv0=mAv1+mBv2£¬ÒòΪv0=
x1 |
t |
x2 |
t |
x3 |
t |
¹ÊÑ¡£ºAB£®
£¨3£©AÇòÓëBÇòÅöºó£¬AÇòµÄËٶȼõС£¬¿ÉÖªAÇòûÓÐÅöײBÇòʱµÄÂäµãÊÇFµã£¬AÇòÓëBÇòÅöײºóAÇòµÄÂäµãÊÇEµã£®ÓÃˮƽλÒÆ´úÌæËٶȣ¬¶¯Á¿ÊغãµÄ±í´ïʽΪ£º
mAOF=mAOE+mBOJ£®
¹Ê´ð°¸Îª£º£¨1£©µÈÓÚ£¬´óÓÚ £¨2£©AB£® £¨3£©F£¬E£¬mAOF=mAOE+mBOJ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿