ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿Èçͼ£¬¿Õ¼ä´æÔÚ·½ÏòÊúÖ±ÏòÏ£¨xOyΪ¹â»¬¾øԵˮƽ×ÀÃ棩µÄ´Å³¡£¬ÔÚÇøÓò£¬´Å¸ÐӦǿ¶ÈµÄ´óСΪB0£¬ÇøÓò£¬´Å¸ÐӦǿ¶ÈµÄ´óСΪ3B0£¬Ò»¸ö²»´øµç¡¢ÖÊÁ¿ÎªmµÄ½ðÊôСÇòaÒÔˮƽ·½ÏòËÙ¶ÈÓë¾²Ö¹ÔÚOµã¡¢µçºÉÁ¿Îªq£¨q£¾0£©¡¢ÖÊÁ¿Îª2m¡¢ÐÎ×´´óСÓëaÍêÈ«Ò»ÑùµÄ½ðÊôСÇòb·¢ÉúÍêÈ«µ¯ÐÔÕýÅö¡£Çó:£¨²»¿¼ÂÇÅöײǰºóÁ½½ðÊôÇòµÄÏ໥×÷Óã©
£¨1£©Åöײ½áÊøʱ½ðÊôСÇòa¡¢bËÙ¶È
£¨2£©´ÓÅöײ½áÊøµ½bÇòµÄËٶȷ½ÏòÔÙ´ÎÑØxÖáÕý·½ÏòµÄʱ¼ä
£¨3£©´ËʱbÇòÓëOµã¼äµÄ¾àÀë.
¡¾´ð°¸¡¿£¨1£© £¬·½ÏòÏò×󣬣¬·½ÏòÏòÓÒ£¨2£©£¨3£©
¡¾½âÎö¡¿
(1)Óɵ¯ÐÔÅöײ£º
mv0=mv1+2mv2
=+
½âµÃ£º
£¬·½ÏòÏò×ó£¬
£¬·½ÏòÏòÓÒ
(2)´øµçÁ£×ÓÅöײʱµçºÉÁ¿ÖØзֲ¼£¬a¡¢b¸÷´ø£¬Á£×ÓbÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯¡£
ÔÚx¡Ý0ÇøÓòÖÐÓÐ:
ÔÚxÇÐÇøÓòÖÐÓУº
Á£×ÓËٶȷ½Ïòת¹ýʱ£¬ËùÐèµÄʱ¼äΪ£º
Á£×ÓËٶȷ½ÏòÔÙת¹ýʱ£¬ËùÐèµÄʱ¼äΪ£º
ÁªÁ¢½âµÃËùÐèµÄʱ¼äΪ£º
t0=t1+t2=
(3)Á£×ÓÓëOµã¼ä¾àÀëΪ£º
d0=2£¨R1-R2£©=