题目内容
如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1m,导轨平面与水平面成θ=37°角,下端连接阻值为R的电阻.匀强磁场方向与导轨平面垂直向上.质量为0.2kg,电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.
(1)求金属棒沿导轨由静止开始下滑时的加速度大小;
(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小;(3)在上问中,若R=2Ω,求磁感应强度的大小.(g=10m/s2,sin37°=0.6,cos37°=0.8)
(1)求金属棒沿导轨由静止开始下滑时的加速度大小;
(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小;(3)在上问中,若R=2Ω,求磁感应强度的大小.(g=10m/s2,sin37°=0.6,cos37°=0.8)
分析:(1)开始下滑时,速度为零,无感应电流产生,因此不受安培力,故根据牛顿第二定律可直接求解结果.
(2)金属棒下滑速度达到稳定时,金属棒所受合外力为零,根据平衡条件求出安培力,然后根据公式P=Fv求解.
(3)结合第(2)问求出回路中的感应电流,然后根据电功率的公式求解.
(2)金属棒下滑速度达到稳定时,金属棒所受合外力为零,根据平衡条件求出安培力,然后根据公式P=Fv求解.
(3)结合第(2)问求出回路中的感应电流,然后根据电功率的公式求解.
解答:解:(1)金属棒开始下滑的初速为零,根据牛顿第二定律有:
mgsinθ-μmgcosθ=ma…①
由①式解得:a=g(sinθ-μcosθ)=10×(O.6-0.25×0.8)m/s2=4m/s2…②
故金属棒沿导轨由静止开始下滑时的加速度大小为4m/s2.
(2)设金属棒运动达到稳定时,速度为v,所受安培力为F,棒在沿导轨方向受力平衡,有:
mgsinθ-μmgcosθ-F=0…③
此时金属棒克服安培力做功的功率等于电路中电阻R消耗的电功率:P=Fv…④
由③、④两式解得:v=
=
=
m/s=10m/s…⑤
故当金属棒下滑速度达到稳定时,棒的速度大小为10m/s.
(3)设电路中电流为I,两导轨间金属棒的长为l,磁场的磁感应强度为B,感应电流为:
I=
…⑥
功率为:P=I2R… ⑦
由⑥、⑦两式解得:B=
=
T=0.4T…⑧
故磁感应强度的大小为0.4T,方向垂直导轨平面向上.
答:(1)金属棒沿导轨由静止开始下滑时的加速度大小为4m/s2;
(2)该速度的大小为10m/s;
(3)在上问中,若R=2Ω,磁感应强度的大小为0.4T.
mgsinθ-μmgcosθ=ma…①
由①式解得:a=g(sinθ-μcosθ)=10×(O.6-0.25×0.8)m/s2=4m/s2…②
故金属棒沿导轨由静止开始下滑时的加速度大小为4m/s2.
(2)设金属棒运动达到稳定时,速度为v,所受安培力为F,棒在沿导轨方向受力平衡,有:
mgsinθ-μmgcosθ-F=0…③
此时金属棒克服安培力做功的功率等于电路中电阻R消耗的电功率:P=Fv…④
由③、④两式解得:v=
P |
F |
P |
mg(sinθ-μcosθ) |
8 |
0.2×10×(0.6-0.25×0.8) |
故当金属棒下滑速度达到稳定时,棒的速度大小为10m/s.
(3)设电路中电流为I,两导轨间金属棒的长为l,磁场的磁感应强度为B,感应电流为:
I=
BLv |
R |
功率为:P=I2R… ⑦
由⑥、⑦两式解得:B=
| ||
BL |
| ||
10×1 |
故磁感应强度的大小为0.4T,方向垂直导轨平面向上.
答:(1)金属棒沿导轨由静止开始下滑时的加速度大小为4m/s2;
(2)该速度的大小为10m/s;
(3)在上问中,若R=2Ω,磁感应强度的大小为0.4T.
点评:解这类问题的突破口为正确分析安培力的变化,正确分析导体棒的运动状态,从力和功率两个角度进行列方程求解.
练习册系列答案
相关题目