题目内容
(2012?宁波模拟)如图所示,直角坐标系xoy位于竖直平面内,在?
m≤x≤0的区域内有磁感应强度大小B=4.0×10-4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E=4N/C、方向沿y轴正方向的条形匀强电场,其宽度d=2m.一质量m=6.4×10-27kg、电荷量q=?-3.2×10?19C的带电粒子从P点以速度v=4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力.求:
(1)带电粒子在磁场中运动时间;
(2)当电场左边界与y轴重合时Q点的横坐标;
(3)若只改变上述电场强度的大小,要求带电粒子仍能通过Q点,讨论此电场左边界的横坐标x′与电场强度的大小E′的函数关系.
3 |
(1)带电粒子在磁场中运动时间;
(2)当电场左边界与y轴重合时Q点的横坐标;
(3)若只改变上述电场强度的大小,要求带电粒子仍能通过Q点,讨论此电场左边界的横坐标x′与电场强度的大小E′的函数关系.
分析:(1)粒子在匀强磁场中由洛伦兹力提供向心力,做匀速圆周运动,由牛顿第二定律求出半径,作出轨迹,由几何知识找出圆心角,求出运动时间.
(2)粒子进入匀强电场,只受电场力,做类平抛运动,根据运动的分解,求出粒子离开电场时的速度偏向角为θ,由数学知识求出Q点的横坐标.
(3)讨论当0<x′<3m时,Q点在电场外面右侧,画出轨迹,研究速度偏向角,求出横坐标x′与电场强度的大小E′的函数关系.
当3m≤x'≤5m时,Q点在电场里,画出轨迹,研究偏转距离y,求出横坐标x′与电场强度的大小E′的函数关系.
(2)粒子进入匀强电场,只受电场力,做类平抛运动,根据运动的分解,求出粒子离开电场时的速度偏向角为θ,由数学知识求出Q点的横坐标.
(3)讨论当0<x′<3m时,Q点在电场外面右侧,画出轨迹,研究速度偏向角,求出横坐标x′与电场强度的大小E′的函数关系.
当3m≤x'≤5m时,Q点在电场里,画出轨迹,研究偏转距离y,求出横坐标x′与电场强度的大小E′的函数关系.
解答:解:(1)带电粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,根据牛顿第二定律 有qvB=
代入数据得:r=2m
轨迹如图1交y轴于C点,过P点作v的垂线交y轴于O1点,
由几何关系得O1为粒子运动轨迹的圆心,且圆心角为60°.
在磁场中运动时间t=
=
×
代入数据得:t=5.23×10-5s
(2)带电粒子离开磁场垂直进入电场后做类平抛运动
设带电粒子离开电场时的速度偏向角为θ,如图1,
则:tanθ=
=
=
=
设Q点的横坐标为x
则:tanθ=
=
故x=5m.
(3)电场左边界的横坐标为x′.
当0<x′<3m时,如图2,设粒子离开电场时的速度偏向角为θ′,
则:tanθ′=
又:tanθ′=
由上两式得:E′=
当3m≤x'≤5m时,如图3,有y=
at2=
将y=1m及各数据代入上式得:E′=
答:(1)带电粒子在磁场中运动时间为t=5.23×10-5s.
(2)当电场左边界与y轴重合时Q点的横坐标x=5m.
(3)电场左边界的横坐标x′与电场强度的大小E′的函数关系为E′=
.
mv2 |
r |
代入数据得:r=2m
轨迹如图1交y轴于C点,过P点作v的垂线交y轴于O1点,
由几何关系得O1为粒子运动轨迹的圆心,且圆心角为60°.
在磁场中运动时间t=
T |
6 |
1 |
6 |
2πm |
qB |
代入数据得:t=5.23×10-5s
(2)带电粒子离开磁场垂直进入电场后做类平抛运动
设带电粒子离开电场时的速度偏向角为θ,如图1,
则:tanθ=
vy |
v |
Eqd |
mv2 |
4×3.2×10-19×2 |
6.4×10-27×16×108 |
1 |
4 |
设Q点的横坐标为x
则:tanθ=
1 |
x-1 |
1 |
4 |
故x=5m.
(3)电场左边界的横坐标为x′.
当0<x′<3m时,如图2,设粒子离开电场时的速度偏向角为θ′,
则:tanθ′=
E′qd |
mv2 |
又:tanθ′=
1 |
4-x′ |
由上两式得:E′=
16 |
4-x′ |
当3m≤x'≤5m时,如图3,有y=
1 |
2 |
E′q(5-x′)2 |
2mv2 |
64 |
(5-x′)2 |
答:(1)带电粒子在磁场中运动时间为t=5.23×10-5s.
(2)当电场左边界与y轴重合时Q点的横坐标x=5m.
(3)电场左边界的横坐标x′与电场强度的大小E′的函数关系为E′=
64 |
(5-x′)2 |
点评:本题是磁场和电场组合场问题,考查分析和解决综合题的能力,关键是运用几何知识画出粒子的运动轨迹.
练习册系列答案
相关题目