ÌâÄ¿ÄÚÈÝ
£¨2011?º£ÄÏÄ£Ä⣩ÈçͼËùʾ£¬ÔÚxoy×ø±êƽÃæµÄµÚÒ»ÏóÏÞÄÚÓÐÒ»ÑØyÖḺ·½ÏòµÄÔÈÇ¿µç³¡£¬ÔÚµÚËÄÏóÏÞÄÚÓÐÒ»´¹Ö±ÓÚƽÃæÏòÍâµÄÔÈÇ¿´Å³¡£¬Ò»ÖÊÁ¿Îªm£¬´øµçÁ¿Îª+qµÄÁ£×Ó£¨ÖØÁ¦²»¼Æ£©¾¹ýµç³¡ÖÐ×ø±êΪ£¨3L£¬L£©µÄPµãʱµÄËٶȴóСΪV0£®·½ÏòÑØxÖḺ·½Ïò£¬È»ºóÒÔÓëxÖḺ·½Ïò³É45¡ã½Ç½øÈë´Å³¡£¬×îºó´Ó×ø±êÔµãOÉä³ö´Å³¡Çó£º
£¨1£©ÔÈÇ¿µç³¡µÄ³¡Ç¿EµÄ´óС£»
£¨2£©ÔÈÇ¿´Å³¡µÄ´Å¸ÐӦǿ¶ÈBµÄ´óС£»
£¨3£©Á£×Ó´ÓPµãÔ˶¯µ½ÔµãOËùÓõÄʱ¼ä£®
£¨1£©ÔÈÇ¿µç³¡µÄ³¡Ç¿EµÄ´óС£»
£¨2£©ÔÈÇ¿´Å³¡µÄ´Å¸ÐӦǿ¶ÈBµÄ´óС£»
£¨3£©Á£×Ó´ÓPµãÔ˶¯µ½ÔµãOËùÓõÄʱ¼ä£®
·ÖÎö£º£¨1£©µ±Á£×Ó´ÓPµã´¹Ö±½øÈëµç³¡ºó£¬×öÀàƽÅ×Ô˶¯£¬ÔÙÒÔÓëxÖá³É45¡ã´¹Ö±½øÈëÔÈÇ¿´Å³¡ºó£¬ÔÚÂåÂ××ÈÁ¦×÷ÓÃÏÂ×öÔÈËÙÔ²ÖÜÔ˶¯£¬½Ó×Å´ÓÔµãÉä³ö£®ÓÉÁ£×ÓÔڵ糡PµãµÄËٶȿÉÇó³ö¸Õ½øÈë´Å³¡µÄËٶȣ¬ÔÙÓɶ¯Äܶ¨Àí¿ÉµÃµç³¡Ç¿¶È£®
£¨2£©´Ó¶øÓÉÀàƽÅ×Ô˶¯ÓëÔ²ÖÜÔ˶¯½áºÏ¼¸ºÎ¹Øϵ¿ÉÇó³öÔ²»¡¶ÔÓ¦µÄ°ë¾¶£¬Òò´Ë¿ÉËã³ö´Å¸ÐӦǿ¶È£®
£¨3£©Í¬Ê±ÓÉÖÜÆÚ¹«Ê½¼°Ô˶¯Ñ§¹«Ê½¿ÉÇó³öÁ£×Ó´ÓPµãµ½OµãµÄʱ¼ä£®
£¨2£©´Ó¶øÓÉÀàƽÅ×Ô˶¯ÓëÔ²ÖÜÔ˶¯½áºÏ¼¸ºÎ¹Øϵ¿ÉÇó³öÔ²»¡¶ÔÓ¦µÄ°ë¾¶£¬Òò´Ë¿ÉËã³ö´Å¸ÐӦǿ¶È£®
£¨3£©Í¬Ê±ÓÉÖÜÆÚ¹«Ê½¼°Ô˶¯Ñ§¹«Ê½¿ÉÇó³öÁ£×Ó´ÓPµãµ½OµãµÄʱ¼ä£®
½â´ð£º½â£ºÁ£×ÓÔڵ糡Öо¹ýµãPºó£¬×öÀàƽÅ×Ô˶¯£¬½øÈë´Å³¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬´ÓOµãÉä³ö£¬ÔòÆäÔ˶¯¹ì¼£ÈçͼËùʾ£®
£¨1£©ÉèÁ£×ÓÔÚOµãʱµÄËٶȴóСΪv£¬OQ¶ÎΪԲÖÜ£¬PQ¶ÎΪÅ×ÎïÏߣ®¸ù¾Ý¶Ô³ÆÐÔ¿ÉÖª£¬Á£×ÓÔÚQµãʱµÄËٶȴóСҲΪv£¬·½ÏòÓëxÖáÕý·½Ïò³É45¡ã½Ç£¬¿ÉµÃ£ºV0=vcos45¡ã
½âµÃ£ºv=
v0
ÔÚÁ£×Ó´ÓPÔ˶¯µ½QµÄ¹ý³ÌÖУ¬Óɶ¯Äܶ¨ÀíµÃ£º
-qE0L=
m
-
mv2
½âµÃ£ºE0=
£¨2£©ÔÚÔÈÇ¿µç³¡ÓÉPµ½QµÄ¹ý³ÌÖУ¬
ˮƽ·½ÏòµÄλÒÆΪx=v0t1
ÊúÖ±·½ÏòµÄλÒÆΪy=
t1=L
¿ÉµÃXQP=2L£¬OQ=L
ÓÉOQ=2Rcos45¡ã¹ÊÁ£×ÓÔÚQO¶ÎÔ²ÖÜÔ˶¯µÄ°ë¾¶£ºR=
L
¼°R=
µÃB0=
£®
£¨3£©ÔÚQµãʱ£¬vy=v0tan45¡ã=v0
ÉèÁ£×Ó´ÓPµ½QËùÓÃʱ¼äΪt1£¬ÔÚÊúÖ±·½ÏòÉÏÓУºt1=
=
Á£×Ó´ÓQµãÔ˶¯µ½OËùÓõÄʱ¼äΪ£ºt2=
T=
ÔòÁ£×Ó´ÓOµãÔ˶¯µ½PµãËùÓõÄʱ¼äΪ£ºt×Ü=t1+t2=
+
=
´ð£º£¨1£©ÔÈÇ¿µç³¡µÄ³¡Ç¿EµÄ´óСΪ
£»
£¨2£©ÔÈÇ¿´Å³¡µÄ´Å¸ÐӦǿ¶ÈBµÄ´óСΪ
£»
£¨3£©Á£×Ó´ÓPµãÔ˶¯µ½ÔµãOËùÓõÄʱ¼ä
£®
£¨1£©ÉèÁ£×ÓÔÚOµãʱµÄËٶȴóСΪv£¬OQ¶ÎΪԲÖÜ£¬PQ¶ÎΪÅ×ÎïÏߣ®¸ù¾Ý¶Ô³ÆÐÔ¿ÉÖª£¬Á£×ÓÔÚQµãʱµÄËٶȴóСҲΪv£¬·½ÏòÓëxÖáÕý·½Ïò³É45¡ã½Ç£¬¿ÉµÃ£ºV0=vcos45¡ã
½âµÃ£ºv=
2 |
ÔÚÁ£×Ó´ÓPÔ˶¯µ½QµÄ¹ý³ÌÖУ¬Óɶ¯Äܶ¨ÀíµÃ£º
-qE0L=
1 |
2 |
v | 2 0 |
1 |
2 |
½âµÃ£ºE0=
m
| ||
2qL |
£¨2£©ÔÚÔÈÇ¿µç³¡ÓÉPµ½QµÄ¹ý³ÌÖУ¬
ˮƽ·½ÏòµÄλÒÆΪx=v0t1
ÊúÖ±·½ÏòµÄλÒÆΪy=
v0 |
2 |
¿ÉµÃXQP=2L£¬OQ=L
ÓÉOQ=2Rcos45¡ã¹ÊÁ£×ÓÔÚQO¶ÎÔ²ÖÜÔ˶¯µÄ°ë¾¶£ºR=
| ||
2 |
¼°R=
mv |
Bq |
µÃB0=
2mv0 |
qL |
£¨3£©ÔÚQµãʱ£¬vy=v0tan45¡ã=v0
ÉèÁ£×Ó´ÓPµ½QËùÓÃʱ¼äΪt1£¬ÔÚÊúÖ±·½ÏòÉÏÓУºt1=
L | ||
|
2L |
v0 |
Á£×Ó´ÓQµãÔ˶¯µ½OËùÓõÄʱ¼äΪ£ºt2=
90¡ã |
360¡ã |
¦ÐL |
4v0 |
ÔòÁ£×Ó´ÓOµãÔ˶¯µ½PµãËùÓõÄʱ¼äΪ£ºt×Ü=t1+t2=
2L |
v0 |
¦ÐL |
4v0 |
(8+¦Ð)L |
4v0 |
´ð£º£¨1£©ÔÈÇ¿µç³¡µÄ³¡Ç¿EµÄ´óСΪ
m
| ||
2qL |
£¨2£©ÔÈÇ¿´Å³¡µÄ´Å¸ÐӦǿ¶ÈBµÄ´óСΪ
2mv0 |
qL |
£¨3£©Á£×Ó´ÓPµãÔ˶¯µ½ÔµãOËùÓõÄʱ¼ä
(8+¦Ð)L |
4v0 |
µãÆÀ£º¿¼²é´øµçÁ£×ÓÔڵ糡ÖÐÒÔÒ»¶¨ËÙ¶È×öÀàƽÅ×Ô˶¯ºó£¬ÓÖÒÔÒ»¶¨ËٶȽøÈëÔÈÇ¿´Å³¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£®µç³¡Á¦×öÁ£×Ó×öÕý¹¦£¬¶øÂåÂ××ÈÁ¦¶ÔÁ£×ÓûÓÐ×ö¹¦£®ÀàƽÅ×Ô˶¯ÓÃÔ˶¯µÄºÏ³ÉÓë·Ö½â´¦Àí£¬¶øÔÈËÙÔ²ÖÜÔ˶¯ÖصãÔòÊÇÇó³ö°ë¾¶ÓëÒÑÖª³¤¶ÈµÄ¹Øϵ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿