题目内容
【题目】如图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速周运动,星球A和B两者中心之间距离为L。已知A、B的中心和O三点始终共线,A和B分别在O的两侧。引力常数为G。
【1】求两星球做圆周运动的周期。
【2】在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行为的周期记为T1。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期T2。已知地球和月球的质量分别为5.98×1024kg 和 7.35 ×1022kg 。求T2与T1两者平方之比。(结果保留3位小数)
【答案】
【1】
【2】 1.01
【解析】
试题(1)A和B绕O做匀速圆周运动,它们之间的万有引力提供向心力,则A和B的向心力大小相等,且A和B和O始终共线,说明A和B有相同的角速度和周期,因此有:
联立解得:
对A根据牛顿第二定律和万有引力定律得:
化简得:
(2)将地月看成双星,由(1)得
将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得:
化简得:
所以两种周期的平方比值为:
A和B有相同的角速度和周期,结合牛顿第二定律和万有引力定律解决问题.
【题目】某实验小组探究弹簧的劲度系数k与其长度(圈数)的关系;实验装置如图(a)所示:一均匀长弹簧竖直悬挂,7个指针P0、P1、P2、P3、P4、P5、P6分别固定在弹簧上距悬点0、10、20、30、40、50、60圈处;通过旁边竖直放置的刻度尺,可以读出指针的位置,P0指向0刻度;设弹簧下端未挂重物时,各指针的位置记为x0;挂有质量为0.100kg砝码时,各指针的位置记为x;测量结果及部分计算结果如下表所示(n为弹簧的圈数,取重力加速度为9.80m/s2).已知实验所用弹簧的总圈数为60,整个弹簧的自由长度为11.88cm.
P1 | P2 | P3 | P4 | P5 | P6 | |
x0 (cm) | 2.04 | 4.06 | 6.06 | 8.05 | 10.03 | 12.01 |
x(cm) | 2.64 | 5.26 | 7.81 | 10.30 | 12.93 | 15.41 |
n | 10 | 20 | 30 | 40 | 50 | 60 |
k(N/m) | 163 | ① | 56.0 | 43.6 | 33.8 | 28.8 |
1/k(m/N) | 0.0061 | ② | 0.0179 | 0.0229 | 0.0296 | 0.0347 |
(1)将表中数据补充完整:______,________;
(2)以n为横坐标,1/k为纵坐标,在图(b)给出的坐标纸上画出1/k-n图象______;
(3)图(b)中画出的直线可以近似认为通过原点;若从实验中所用的弹簧截取圈数为n的一段弹簧,该弹簧的劲度系数k与其圈数n的关系的表达式为k=_______N/m;该弹簧的劲度系数k与其自由长度l0(单位为m)的表达式为k=______N/m.