题目内容
【题目】某实验小组在利用单摆测定当地重力加速度的实验中:
(1)摆动时偏角满足的条件是偏角小于5°,为了减小测量周期的误差,计时开始时,摆球应是经过最_____(填“高”或“低”)点的位置。若用L表示摆长,T表示周期,那么重力加速度的表达式为g=_____。
(2)考虑到单摆振动时空气浮力的影响后,学生甲说:“因为空气浮力与摆球重力方向相反,它对球的作用相当于重力加速度变小,因此振动周期变大。”学生乙说:“浮力对摆球的影响好像用一个轻一些的摆球做实验,因此振动周期不变”,这两个学生中_____。
A.甲的说法正确
B.乙的说法正确
C.两学生的说法都是错误的
(3)某同学用单摆测当地的重力加速度。他测出了摆线长度L和摆动周期T,如图(a)所示。通过改变悬线长度L,测出对应的摆动周期T,获得多组T与L,再以T2为纵轴、L为横轴画出函数关系图象如图(b)所示。由图象可知,摆球的半径r=_____m,当地重力加速度g=_____m/s2;由此种方法得到的重力加速度值与实际的重力加速度值相比会_____(选填“偏大”“偏小”或“一样”)
【答案】低 A 0.010 9.86 一样
【解析】
(1)单摆测重力加速度时,计时起点应该选取平衡位置即最低点,因为在最高点时,速度为零,误差较大;根据单摆周期公式:,所以:
(2)根据题意分析,空气对摆球有一个竖直向上的浮力,所以导致竖直方向的合力比重力小,即相当于减小了重力加速度,根据公式,可知单摆的周期变大,甲的说法正确,BC错误A正确
(3)根据可知:,,所以图像与横轴交点为半径大小,即,根据解析式并结合图像可知,图像斜率为:,解得:,根据解析式可知,考虑不考虑球的半径,斜率不变都是,只是图像在坐标系中沿x轴平移,所以此种方法得到的重力加速度值与实际的重力加速度值相比一样。