题目内容
如图所示,小车向右做匀加速直线运动的加速度大小为a,bc是固定在小车上的水平横杆,物块M穿在杆上,M通过细线悬吊着小铁球m,M、m均相对小车静止,细线与竖直方向的夹角为θ,若小车的加速度逐渐增大到3a时,M、m仍与小车保持相对静止,则
- A.细线与竖直方向的夹角增加到原来的3倍
- B.细线与竖直方向夹角的正切值增加到原来的3倍
- C.细线的拉力增加到原来的3倍
- D.M受到的摩擦力增加到原来的3倍
BD
分析:先对小球受力分析,根据牛顿第二定律列式分析;再对小球和滑块整体受力分析,根据牛顿第二定律列式求解.
解答:对小球受力分析,受重力mg和细线的拉力T,如图
根据牛顿第二定律,有
Tsinθ=ma ①
Tcosθ-mg=0 ②
再对m和M整体受力分析,受总重力(M+m)g、支持力N、摩擦力f,如图
根据牛顿第二定律,有
f=(M+m)a ③
N-(M+m)g=0 ④
由①②③④解得:
tanθ=
N=(M+m)g
T=
f=(M+m)a
θ的正切变为原来的3倍,但θ不是3倍,故A错误,B正确;
由于T=,故T不是增加原来的3倍,故C错误;
当加速度变为3倍时,摩擦力f变为3倍,故D正确;
故选BD.
点评:本题关键是先后对小球、滑块与小球整体受力分析后根据牛顿第二定律列式求解.
分析:先对小球受力分析,根据牛顿第二定律列式分析;再对小球和滑块整体受力分析,根据牛顿第二定律列式求解.
解答:对小球受力分析,受重力mg和细线的拉力T,如图
根据牛顿第二定律,有
Tsinθ=ma ①
Tcosθ-mg=0 ②
再对m和M整体受力分析,受总重力(M+m)g、支持力N、摩擦力f,如图
根据牛顿第二定律,有
f=(M+m)a ③
N-(M+m)g=0 ④
由①②③④解得:
tanθ=
N=(M+m)g
T=
f=(M+m)a
θ的正切变为原来的3倍,但θ不是3倍,故A错误,B正确;
由于T=,故T不是增加原来的3倍,故C错误;
当加速度变为3倍时,摩擦力f变为3倍,故D正确;
故选BD.
点评:本题关键是先后对小球、滑块与小球整体受力分析后根据牛顿第二定律列式求解.
练习册系列答案
相关题目