ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬Ð¡³µÏòÓÒ×öÔȼÓËÙÖ±ÏßÔ˶¯µÄ¼ÓËٶȴóСΪa£¬bcÊǹ̶¨ÔÚС³µÉϵÄˮƽºá¸Ë£¬Îï¿éM´©ÔÚ¸ËÉÏ£¬Mͨ¹ýϸÏßÐüµõ×ÅСÌúÇòm£¬M¡¢m¾ùÏà¶ÔС³µ¾²Ö¹£¬Ï¸ÏßÓëÊúÖ±·½ÏòµÄ¼Ð½ÇΪ¦È£¬ÈôС³µµÄ¼ÓËÙ¶ÈÖð½¥Ôö´óµ½2aʱ£¬M¡¢mÈÔÓëС³µ±£³ÖÏà¶Ô¾²Ö¹£¬Ôò£¨¡¡¡¡£©
·ÖÎö£ºÏȶÔСÇòÊÜÁ¦·ÖÎö£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽ·ÖÎö£»ÔÙ¶ÔСÇòºÍ»¬¿éÕûÌåÊÜÁ¦·ÖÎö£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽÇó½â£®
½â´ð£º½â£º¶ÔСÇòÊÜÁ¦·ÖÎö£¬ÊÜÖØÁ¦mgºÍϸÏßµÄÀÁ¦T£¬Èçͼ
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÓÐ
Tsin¦È=ma ¢Ù
Tcos¦È-mg=0 ¢Ú
ÔÙ¶ÔmºÍMÕûÌåÊÜÁ¦·ÖÎö£¬ÊÜ×ÜÖØÁ¦£¨M+m£©g¡¢Ö§³ÖÁ¦N¡¢Ä¦²ÁÁ¦f£¬Èçͼ
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÓÐ
f=£¨M+m£©a ¢Û
N-£¨M+m£©g=0 ¢Ü
Óɢ٢ڢۢܽâµÃ£º
tan¦È=
£¬
ÈôС³µµÄ¼ÓËÙ¶ÈÖð½¥Ôö´óµ½2a£¬Ôò¦ÈµÄÕýÇбäΪÔÀ´µÄ2±¶
N=£¨M+m£©g
T=
f=£¨M+m£©a
¦ÈµÄÕýÇбäΪÔÀ´µÄ2±¶£¬µ«¦È²»ÊÇ2±¶£»
ÓÉÓÚT=
£¬¹ÊT²»ÊÇÔö¼ÓÔÀ´µÄ2±¶£¬
µ±¼ÓËٶȱäΪ2±¶Ê±£¬Ä¦²ÁÁ¦f±äΪ2±¶£¬¹ÊADÕýÈ·£¬BC´íÎó£»
¹ÊÑ¡AD£®
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÓÐ
Tsin¦È=ma ¢Ù
Tcos¦È-mg=0 ¢Ú
ÔÙ¶ÔmºÍMÕûÌåÊÜÁ¦·ÖÎö£¬ÊÜ×ÜÖØÁ¦£¨M+m£©g¡¢Ö§³ÖÁ¦N¡¢Ä¦²ÁÁ¦f£¬Èçͼ
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÓÐ
f=£¨M+m£©a ¢Û
N-£¨M+m£©g=0 ¢Ü
Óɢ٢ڢۢܽâµÃ£º
tan¦È=
a |
g |
ÈôС³µµÄ¼ÓËÙ¶ÈÖð½¥Ôö´óµ½2a£¬Ôò¦ÈµÄÕýÇбäΪÔÀ´µÄ2±¶
N=£¨M+m£©g
T=
m(g2+a2) |
f=£¨M+m£©a
¦ÈµÄÕýÇбäΪÔÀ´µÄ2±¶£¬µ«¦È²»ÊÇ2±¶£»
ÓÉÓÚT=
m(g2+a2) |
µ±¼ÓËٶȱäΪ2±¶Ê±£¬Ä¦²ÁÁ¦f±äΪ2±¶£¬¹ÊADÕýÈ·£¬BC´íÎó£»
¹ÊÑ¡AD£®
µãÆÀ£º±¾Ìâ¹Ø¼üÊÇÏȺó¶ÔСÇò¡¢»¬¿éÓëСÇòÕûÌåÊÜÁ¦·ÖÎöºó¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿