题目内容

理论分析表明,天体系统中逃逸速度是第一宇宙速度的
2
倍.若某行星的质量是地球质量的12倍,半径是地球半径的1.5倍,则此行星的逃逸速度大约为(  )(已知地球的第一宇宙速度约为8km/s)
分析:由万有引力等于向心力,可以得到第一宇宙速度的表达式,
根据行星的质量是地球质量的12倍,半径是地球半径的1.5倍,进行比较找出行星的第一宇宙速度,再求出逃逸速度.
解答:解:第一宇宙速度是近地卫星的环绕速度v=
GM
R
,R为星球半径.
行星上的第一宇宙速度与地球上的第一宇宙速度之比:
12M
1.5R
M
R
=2
2

所以行星的第一宇宙速度是16
2
km/s,所以行星的逃逸速度大约为32km/s.
故选C.
点评:本题关键是根据第一宇宙速度的表达式列式求解,其中第一宇宙速度为贴近星球表面飞行的卫星的环绕速度!
求一个物理量之比,我们应该把这个物理量先用已知的物理量表示出来,再根据表达式进行比较.
练习册系列答案
相关题目
资料:理论分析表明,逃逸速度是环绕速度的
2
倍,即v′=
2GM
R
,由此可知,天体的质量M越大,半径R越小,逃逸速度也就越大,也就是说,其表面的物体就越不容易脱离它的束缚,有些恒星,在它一生的最后阶段,强大的引力把其中的物质紧紧的压在一起,密度极大,每立方米的质量可达数千吨,它们的质量非常大,半径又非常小,其逃逸速度非常大.于是,我们自然要想,会不会有这样的天体,它的质量更大,半径更小,逃逸速度更大,以3.00×108m/s的速度传播的光都不能逃逸?如果宇宙中真的存在这样的天体,即使它确实在发光,光也不能进入太空,我们根本看不到它,这种天体称为黑洞.1970年,科学家发现了第一个很可能是黑洞的目标.已知,G=6.67×10-11N?m/kg 2,C=3.00×108m/s,求:
(1)逃逸速度大于真空中光速的天体叫黑洞,设某黑洞的质量等于太阳的质量M=1.98×1030kg,求它的可能最大半径(此小题结果用科学计数法表示,小数点后保留2位,不得使用计算器)
(2)在目前天文观测范围内,物质的平均密度为ρ,如果认为我们宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度C,因此任何物体都不能脱离宇宙,问宇宙的半径至少多大?(球的体积计算方程V=
4
3
πR3
,此小题结果用题中所给字母表示)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网