题目内容

一个电子以初速度v0=3.0×106m/s沿着垂直于场强方向射入两带电平行金属板间,金属板长L=6.0×10-2m,两板之间可以看成是匀强电场,场强大小为E=2×103N/C,电子的电量e=1.6×10-19C,质量m=9.1×10-31kg,求:
(1)电子射离电场时的速度;
(2)出射点与入射点沿场强方向的距离.
分析:由动能定理求出电子经加速电场加速后获得的速度;电子进入偏转电场后做类平抛运动,由类平抛运动知识求出电子离开偏转电场时的偏转位移.
解答:解:以电子为研究对象,电子在电场力的作用下做类平抛运动,设电子离开加速电场时的速度为v,
由动能定理得:qU=
1
2
mv-
1
2
m
v
2
0
…①
电子在电场运动的时间:t=
L
v0
…②
电子在电场中的加速度,由牛顿第二定律得;  a=
Eq
m
…③
电子在电场方向上运动的位移:h=
1
2
at2
…④
电子从入电场到出电场间的电势差:U=Eh…⑤
联立①②③④⑤解之得:v=7.7×106m/s;h=7×10-2m
答:(1)电子射离电场时的速度7.7×106m/s;
(2)出射点与入射点沿场强方向的距离7×10-2m.
点评:解题关键是判断电子做类平抛运动,分解成沿原方向的匀速直线运动,在电场力方向的初速度为零的匀加速运动,并且满足动能定理,注意计算量较大,易出错.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网