题目内容
【题目】如图所示,一倾角θ=37°的斜面底端与一传送带左端相连于B点,传送带以v=6m/s的速度顺时针转动,有一小物块从斜面顶端点以υ0=4m/s的初速度沿斜面下滑,当物块滑到斜面的底端点时速度恰好为零,然后在传送带的带动下,从传送带右端的C点水平抛出,最后落到地面上的D点,已知斜面长度L1=8m,传送带长度L2=18m,物块与传送带之间的动摩擦因数μ2=0.3,(sin37°=0.6,cos37°=0.8,g=10m/s2)。
(1)求物块与斜而之间的动摩擦因数μl;
(2)求物块在传送带上运动时间;
(3)若物块在D点的速度方向与地面夹角为a=53°,求C点到地面的高度和C、D两点间的水平距离。
【答案】(1)
(2)4s;
(3)4.8m.
【解析】
试题(1)从A到B由动能定理即可求得摩擦因数
(2)由牛顿第二定律求的在传送带上的加速度,判断出在传送带上的运动过程,由运动学公式即可求的时间;
(3)物体做平抛运动,在竖直方向自由落体运动,
解:(1)从A到B由动能定理可知
代入数据解得
(2)物块在传送带上由牛顿第二定律:μ2mg=ma
a=
达到传送带速度所需时间为t=s
加速前进位移为<18m
滑块在传送带上再匀速运动
匀速运动时间为
故经历总时间为t总=t+t′=4s
(3)设高度为h,则竖直方向获得速度为
联立解得h=3.2m
下落所需时间为
水平位移为xCD=vt″=6×0.8s=4.8m
答:(1)求物块与斜而之间的动摩擦因数μl为
(2)求物块在传送带上运动时间为4s;
(3)若物块在D点的速度方向与地面夹角为a=53°,C点到地面的高度为3.2m和C、D两点间的水平距离为4.8m.
练习册系列答案
相关题目