题目内容

【题目】如图.光滑水平直轨道上有三个质量均为m的物块A、B、C,B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).A以速度v0向B运动,压缩弹簧,当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短,求从A开始压缩弹簧直至与弹簧分离的过程中:

(1)B和C碰前瞬间B的速度:
(2)整个系统损失的机械能:
(3)弹簧被压缩到最短时的弹性势能.

【答案】
(1)解:从A压缩弹簧到A与B具有相同速度v1时,系统动量守恒,以向右为正方向,由动量守恒定律得:

mv0=2mv1

设碰撞后瞬间B与C的速度为v2,向右为正方向,由动量守恒定律得:

mv1=2mv2

解得:v2=

答:B和C碰前瞬间B的速度为


(2)解:设B与C碰撞损失的机械能为△E.由能量守恒定律得:

mv12=△E+ 2mv22

整个系统损失的机械能为:△E= mv02

答:整个系统损失的机械能为 mv02


(3)解:由于v2<v1,A将继续压缩弹簧,直至A、B、C三者速度相同,

设此时速度为v3,弹簧被压缩至最短,其弹性势能为Ep,以向右为正方向,

由动量守恒定律得:mv0=3mv3

由能量守恒定律得: mv02﹣△E= 3mv32+EP

解得:EP= mv02

答:弹簧被压缩到最短时的弹性势能为 mv02


【解析】(1)B和C碰前瞬间A与B具有相同速度。根据动量守恒定律列式求解。
(2)碰撞前后只有动量守恒根据动量守恒定律列方程求解即可。
(3)追击相遇问题弹簧被压缩至最短时三物体速度相等。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网