题目内容
17.如图,金属杆ab静放在光滑的水平固定的“U”形金属框上,处于竖直向上的匀强磁场中.现使ab突然获得一向右的初速度v,下列表述正确的是( )A. | 安培力对ab做正功 | B. | ab杆将向右匀速运动 | ||
C. | 杆中感应电流逐渐减小 | D. | 杆中感应电流保持不变 |
分析 ab棒突然获得一初速度,切割磁感线,产生感应电动势,产生感应电流,受到向左的安培力,做变减速运动;根据E=BLv和I=$\frac{E}{R}$判断感应电流的变化.
解答 解:A、B、ab棒突然获得一初速度,切割磁感线,产生感应电动势,形成感应电流,根据楞次定律,来拒去留,受向左的安培力,故安培力做负功,故A错误;
C、D、由于安培力做负功,故棒做减速运动;
根据E=BLv和I=$\frac{E}{R}$,有:I=$\frac{BLv}{R}$;
由于速度减小,故感应电流逐渐减小,故C正确,BD错误;
故选:C.
点评 本题主要根据楞次定律判断安培力方向,根据公式E=BLv和I=$\frac{E}{R}$判断感应电流大小的变化情况,基础题.
练习册系列答案
相关题目
7.某多用电表内欧姆挡“×1”的内部电路图如图1所示,小明同学将电阻箱和电压表V并联后接在两表笔a、b上,欲用图示的电路测量多用电表内部的电阻r(远小于电压表V的内阻)和电池的电动势E.实验的主要步骤为:
(1)表笔a为红(填“红表笔”或“黑表笔”).将选择开关转至欧姆挡“×1”,将红黑表笔短接,调节a,使指针指在右(填“左”或“右”)侧零刻度处.
(2)改变电阻箱R的阻值,分别读出6组电压表和电阻箱的示数U、R,将$\frac{1}{U}$、$\frac{1}{R}$的值算出并记录在表格中,请将第3、5组数据的对应点在坐标纸上补充标出,并作出$\frac{1}{U}$-$\frac{1}{R}$图线.
(3)根据图线得到电动势E=1.43V,内电阻r=2.52Ω.(结果保留三位有效数字)
(4)由于电压表的分流作用,多用电表内部电池的电动势的测量值比真实值小(填“大”或“小”).
(1)表笔a为红(填“红表笔”或“黑表笔”).将选择开关转至欧姆挡“×1”,将红黑表笔短接,调节a,使指针指在右(填“左”或“右”)侧零刻度处.
(2)改变电阻箱R的阻值,分别读出6组电压表和电阻箱的示数U、R,将$\frac{1}{U}$、$\frac{1}{R}$的值算出并记录在表格中,请将第3、5组数据的对应点在坐标纸上补充标出,并作出$\frac{1}{U}$-$\frac{1}{R}$图线.
组数 | 1 | 2 | 3 | 4 | 5 | 6 |
R | 100.0 | 50.0 | 25.0 | 16.7 | 12.5 | 9.1 |
$\frac{1}{R}$ | 0.01 | 0.02 | 0.04 | 0.06 | 0.08 | 0.11 |
U | 1.20 | 0.95 | 0.74 | 0.60 | 0.50 | 0.40 |
$\frac{1}{U}$ | 0.83 | 1.05 | 1.35 | 1.68 | 2.00 | 2.50 |
(4)由于电压表的分流作用,多用电表内部电池的电动势的测量值比真实值小(填“大”或“小”).
5.如图,在粗糙绝缘水平面上固定一点电荷Q,在M点无初速度地释放带电小物块P,P将沿水平面运动到N点静止,则从M到N的过程中( )
A. | P所受库仑力逐渐减小 | |
B. | P的电势能一定增加 | |
C. | M、N 两点的电势φM一定高于φN | |
D. | 克服摩擦力做的功等于电势能的减少 |
12.我国于2010年10月1日成功发射了月球探测卫星“嫦娥二号”,“嫦娥二号”在椭圆轨道近月点Q完成近月拍摄任务后,到达椭圆轨道的远月点P变轨成圆轨道,如图所示.忽略地球对“嫦娥二号”的影响,则“嫦娥二号”( )
A. | 在由椭圆轨道变成圆形轨道过程中机械能不变 | |
B. | 在由椭圆轨道变成圆形轨道过程中线速度增大 | |
C. | 在Q点的线速度比沿圆轨道运动的线速度小 | |
D. | 在Q点的加速度比沿圆轨道运动的加速度小 |
9.甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是( )
A. | 乙的速度大于第一宇宙速度 | B. | 甲的运行周期大于乙的周期 | ||
C. | 甲的加速度小于乙的加速度 | D. | 甲有可能经过北极的正上方 |
6.下列说法中正确的是( )
A. | 气体的温度升高时,分子的平均动能增大,气体的压强一定增大 | |
B. | 气体的体积变小时,单位体积的分子数增多,气体的压强一定增大 | |
C. | 压缩一定量的气体,气体的内能一定增加 | |
D. | 分子a从远处趋近固定不动的分子b,当a到达受b的作用力为零处时,其动能一定最大 |