ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬Î»ÓÚÊúֱƽÃæÄÚµÄ×ø±êϵxoy£¬ÔÚÆäµÚÈýÏóÏÞ¿Õ¼äÓÐÑØˮƽ·½ÏòµÄ¡¢´¹Ö±ÓÚÖ½ÃæÏòÍâµÄÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶È´óСΪB=0.5T£¬»¹ÓÐÑØxÖḺ·½ÏòµÄÔÈÇ¿µç³¡£¬³¡Ç¿´óСΪE=
£®ÔÚÆäµÚÒ»ÏóÏÞ¿Õ¼äÓÐÑØyÖḺ·½ÏòµÄ¡¢³¡Ç¿´óСҲΪEµÄÔÈÇ¿µç³¡£¬²¢ÔÚy£¾h=0.4mµÄÇøÓòÓдŸÐӦǿ¶ÈҲΪBµÄ´¹Ö±ÓÚÖ½ÃæÏòÀïµÄÔÈÇ¿´Å³¡£®Ò»¸ö´øµçºÉÁ¿ÎªqµÄÓ͵δÓͼÖеÚÈýÏóÏÞµÄPµãµÃµ½Ò»³õËٶȣ¬Ç¡ºÃÄÜÑØPO×÷ÔÈËÙÖ±ÏßÔ˶¯£¨POÓëxÖḺ·½ÏòµÄ¼Ð½ÇΪ¦È=45¡ã£©£¬²¢´ÓÔµãO½øÈëµÚÒ»ÏóÏÞ£®ÒÑÖªÖØÁ¦¼ÓËÙ¶Èg=10m/s2£¬ÎÊ£º
£¨1£©Ó͵ÎÔÚµÚÒ»ÏóÏÞÔ˶¯Ê±Êܵ½µÄÖØÁ¦¡¢µç³¡Á¦¡¢ÂåÂ××ÈÁ¦ÈýÁ¦µÄ´óС֮±È£»
£¨2£©Ó͵ÎÔÚPµãµÃµ½µÄ³õËٶȴóС£»
£¨3£©Ó͵ÎÔÚµÚÒ»ÏóÏÞÔ˶¯µÄʱ¼äÒÔ¼°Ó͵ÎÀ뿪µÚÒ»ÏóÏÞ´¦µÄ×ø±êÖµ£®
2N | C |
£¨1£©Ó͵ÎÔÚµÚÒ»ÏóÏÞÔ˶¯Ê±Êܵ½µÄÖØÁ¦¡¢µç³¡Á¦¡¢ÂåÂ××ÈÁ¦ÈýÁ¦µÄ´óС֮±È£»
£¨2£©Ó͵ÎÔÚPµãµÃµ½µÄ³õËٶȴóС£»
£¨3£©Ó͵ÎÔÚµÚÒ»ÏóÏÞÔ˶¯µÄʱ¼äÒÔ¼°Ó͵ÎÀ뿪µÚÒ»ÏóÏÞ´¦µÄ×ø±êÖµ£®
·ÖÎö£º£¨1£©Ó͵ÎÔÚ¸´ºÏ³¡ÖÐ×öÖ±ÏßÔ˶¯£¬´¹Ö±Ëٶȷ½ÏòµÄºÏÁ¦Ò»¶¨ÎªÁ㣬ÊÜÁ¦·ÖÎöÈçͼËùʾ£ºÈç¹ûÓ͵δø¸ºµç£¬ÊÜÁ¦·ÖÎöÈ磨1£©Ëùʾ£¬´øÕýµç£¬ÊÜÁ¦·ÖÎöÈ磨2£©Ëùʾ£®
ÒòΪҪ±£Ö¤´¹Ö±Ëٶȷ½ÏòºÏÁ¦ÎªÁ㣬£¨2£©ÖÐÓ͵ÎÒ»¶¨×ö¼õËÙÔ˶¯£¬ÕâʱÂåÂØ×ÈÁ¦Ôڱ仯£¬µ¼Ö´¹Ö±Ëٶȷ½ÏòµÄÁ¦·¢Éú±ä»¯£¬Ó͵β»¿ÉÄÜ×öÖ±ÏßÔ˶¯£¬¼´Ó͵β»½ö´¹Ö±Ëٶȷ½ÏòºÏÁ¦ÎªÁ㣬ÑØËٶȷ½ÏòºÏÁ¦Ò²ÎªÁ㣬ÔòÖ»ÄÜÊÇ£¨1£©Í¼£¬ËùÒÔÓ͵ÎÒ»¶¨´ø¸ºµç£®
£¨2£©¸ù¾ÝµÚÒ»Îʽá¹û£¬ÔËÓÃÂåÂ××ÈÁ¦¹«Ê½Çó½â£»
£¨3£©Á£×Ó½øÈëµÚÒ»ÏóÏÞʱ£¬ÖØÁ¦ºÍµç³¡Á¦Æ½ºâ£¬¹ÊÁ£×ÓÏÖ×öÔÈËÙÖ±ÏßÔ˶¯£¬ÔÙ×öÔÈËÙÔ²ÖÜÔ˶¯£¬×îºó×öÔÈËÙÖ±ÏßÔ˶¯£¬¸ù¾Ý¼¸ºÎ¹ØϵºÍÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦¼ÆËã×Üʱ¼ä²¢È·¶¨À뿪µÚÒ»ÏóÏÞµÄλÖã®
ÒòΪҪ±£Ö¤´¹Ö±Ëٶȷ½ÏòºÏÁ¦ÎªÁ㣬£¨2£©ÖÐÓ͵ÎÒ»¶¨×ö¼õËÙÔ˶¯£¬ÕâʱÂåÂØ×ÈÁ¦Ôڱ仯£¬µ¼Ö´¹Ö±Ëٶȷ½ÏòµÄÁ¦·¢Éú±ä»¯£¬Ó͵β»¿ÉÄÜ×öÖ±ÏßÔ˶¯£¬¼´Ó͵β»½ö´¹Ö±Ëٶȷ½ÏòºÏÁ¦ÎªÁ㣬ÑØËٶȷ½ÏòºÏÁ¦Ò²ÎªÁ㣬ÔòÖ»ÄÜÊÇ£¨1£©Í¼£¬ËùÒÔÓ͵ÎÒ»¶¨´ø¸ºµç£®
£¨2£©¸ù¾ÝµÚÒ»Îʽá¹û£¬ÔËÓÃÂåÂ××ÈÁ¦¹«Ê½Çó½â£»
£¨3£©Á£×Ó½øÈëµÚÒ»ÏóÏÞʱ£¬ÖØÁ¦ºÍµç³¡Á¦Æ½ºâ£¬¹ÊÁ£×ÓÏÖ×öÔÈËÙÖ±ÏßÔ˶¯£¬ÔÙ×öÔÈËÙÔ²ÖÜÔ˶¯£¬×îºó×öÔÈËÙÖ±ÏßÔ˶¯£¬¸ù¾Ý¼¸ºÎ¹ØϵºÍÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦¼ÆËã×Üʱ¼ä²¢È·¶¨À뿪µÚÒ»ÏóÏÞµÄλÖã®
½â´ð£º½â£º£¨1£©Ó͵δø¸ºµçºÉ£¬ÉèÓ͵ÎÖÊÁ¿Îªm£¬ÊÜÁ¦Èçͼ
ÓÉƽºâÌõ¼þ½áºÏ¼¸ºÎ¹ØϵµÃµ½£º
mg£ºqE£ºf=1£º1£º
£¨2£©¸ù¾ÝÂåÂ××ÈÁ¦¹«Ê½£¬ÓÐ
f=qvB
¹Ê
mg£ºqE£ºqvB=1£º1£º
¹Ê
v=
=4
m/s
£¨3£©½øÈëµÚÒ»ÏóÏÞ£¬µç³¡Á¦ºÍÖØÁ¦ÏàµÈ£¬ÖªÓ͵ÎÏÈ×öÔÈËÙÖ±ÏßÔ˶¯£¬½øÈëy¡ÝhµÄÇøÓòºó×öÔÈËÙÔ²ÖÜÔ˶¯£¬Â·¾¶Èçͼ£¬×îºó´ÓxÖáÉϵÄNµãÀ뿪µÚÒ»ÏóÏÞ£®
ÓÉOµ½AÔÈËÙÔ˶¯Î»ÒÆΪS1=
=
hÖªÔ˶¯Ê±¼ä£ºtt1=
=
=
=0.1s
Óɼ¸ºÎ¹ØϵºÍÔ²ÖÜÔ˶¯µÄÖÜÆÚ¹ØϵT=
ÖªÓÉA¡úCµÄÔ²ÖÜÔ˶¯Ê±¼äΪt2=
T=
£¬ÓɶԳÆÐÔÖª´ÓC¡úNµÄʱ¼ät1=t3
ÔÚµÚÒ»ÏóÏÞÔ˶¯µÄ×Üʱ¼ä t=t1+t2+t3=
+
=0.82s
ÓÉÔڴų¡ÖеÄÔÈËÙÔ²ÖÜÔ˶¯£¬ÓС¡qvB=m
£¬½âµÃ¹ìµÀ°ë¾¶R=
=
ͼÖеÄON=2£¨S1cos45¡ã+Rcos45¡ã£©=2(h+
)=4.0m
¼´Ó͵ÎÔÚµÚÒ»ÏóÏÞÔ˶¯µÄʱ¼äΪ0.82s£¬À뿪µÚÒ»ÏóÏÞ´¦£¨Nµã£©µÄ×ø±êΪ£¨4.0m£¬0£©£®
ÓÉƽºâÌõ¼þ½áºÏ¼¸ºÎ¹ØϵµÃµ½£º
mg£ºqE£ºf=1£º1£º
2 |
£¨2£©¸ù¾ÝÂåÂ××ÈÁ¦¹«Ê½£¬ÓÐ
f=qvB
¹Ê
mg£ºqE£ºqvB=1£º1£º
2 |
¹Ê
v=
| ||
B |
2 |
£¨3£©½øÈëµÚÒ»ÏóÏÞ£¬µç³¡Á¦ºÍÖØÁ¦ÏàµÈ£¬ÖªÓ͵ÎÏÈ×öÔÈËÙÖ±ÏßÔ˶¯£¬½øÈëy¡ÝhµÄÇøÓòºó×öÔÈËÙÔ²ÖÜÔ˶¯£¬Â·¾¶Èçͼ£¬×îºó´ÓxÖáÉϵÄNµãÀ뿪µÚÒ»ÏóÏÞ£®
ÓÉOµ½AÔÈËÙÔ˶¯Î»ÒÆΪS1=
h |
sin45¡ã |
2 |
S1 |
v |
| ||||
|
Bh |
E |
Óɼ¸ºÎ¹ØϵºÍÔ²ÖÜÔ˶¯µÄÖÜÆÚ¹ØϵT=
2¦Ðm |
qB |
1 |
4 |
¦Ðm |
2qB |
ÔÚµÚÒ»ÏóÏÞÔ˶¯µÄ×Üʱ¼ä t=t1+t2+t3=
2Bh |
E |
¦ÐE |
2qB |
ÓÉÔڴų¡ÖеÄÔÈËÙÔ²ÖÜÔ˶¯£¬ÓС¡qvB=m
v2 |
R |
mv |
qB |
| ||
qB2 |
ͼÖеÄON=2£¨S1cos45¡ã+Rcos45¡ã£©=2(h+
E2 |
qB2 |
¼´Ó͵ÎÔÚµÚÒ»ÏóÏÞÔ˶¯µÄʱ¼äΪ0.82s£¬À뿪µÚÒ»ÏóÏÞ´¦£¨Nµã£©µÄ×ø±êΪ£¨4.0m£¬0£©£®
µãÆÀ£º±¾Ìâ¹Ø¼üÊÇÏÈÈ·¶¨ÎïÌåµÄÔ˶¯Çé¿ö£¬²¢»³öÔ˶¯¹ì¼££¬È»ºóÖð¶ÎÖð¶Î·ÖÎö£¬ÔÈËÙÔ˶¯½×¶ÎÊÜÁ¦Æ½ºâ£¬ÔÈËÙÔ²ÖÜÔ˶¯½×¶ÎÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿