题目内容
(2007?北京)两个半径均为R的圆形平板电极,平行正对放置,相距为d,极板间电压为U,板间电场可以认为是均匀的.一个α粒子从正极板边缘以某一初速度垂直于电场方向射入两极板之间,到达负极板时恰好落在极板中心.已知质子电荷为e,质子和中子的质量均视为m,忽略重力和空气阻力的影响.求:
(1)极板间的电场强度E;
(2)α粒子在极板间运动的加速度a;
(3)α粒子的初速度v0.
(1)极板间的电场强度E;
(2)α粒子在极板间运动的加速度a;
(3)α粒子的初速度v0.
分析:因为极板间是匀强电场,电场强度直接可根据匀强电场公式求出.质子进入电场后做类平抛运动,在沿电场方向上做初速度为零的匀加速直线运动,在垂直于电场方向上做匀速直线运动.α粒子在极板间运动的加速度a可以根据所受的合力(电场力)求出,α粒子的初速度v0可以根据两分运动的等时性去求解.
解答:解:(1)极间场强E=
故极板间的电场强度E=
(2)α粒子在极板间运动的加速度a=
,代入得:
a=
故α粒子在极板间运动的加速度a=
(3)由d=
at2得:t=
=2d
v0=
=
故α粒子的初速度v0=
.
U |
d |
故极板间的电场强度E=
U |
d |
(2)α粒子在极板间运动的加速度a=
qE |
m |
a=
eU |
2md |
故α粒子在极板间运动的加速度a=
eU |
2md |
(3)由d=
1 |
2 |
|
|
R |
t |
R |
2d |
|
故α粒子的初速度v0=
R |
2d |
|
点评:解决本题关键会对类平抛运动进行分解,注意两分运动的等时性.
练习册系列答案
相关题目