题目内容
(2012?宝山区一模)如图所示,一块橡皮用细线悬挂于O点,现用支铅笔贴着细线的左侧水平向右以速度v匀速移动,运动过程中保持铅笔的高度不变,悬挂橡皮的那段细线保持竖直,则在铅笔未碰到橡皮前,橡皮的运动情况是( )
分析:将铅笔与绳子接触的点的速度分解为沿绳方向和垂直于绳子方向,求出沿绳子方向上的分速度,而沿绳子方向上的分速度等于橡皮在竖直方向上的分速度,橡皮在水平方向上的分速度为v,根据平行四边形定则求出橡皮的速度.
解答:解:A、橡皮在水平方向上的速度与铅笔速度相同,为v,所以橡皮在水平方向上作匀速运动,故A正确;
B、将铅笔与绳子接触的点的速度分解为沿绳方向和垂直于绳子方向,如图,则沿绳子方向上的分速度为vsinθ,因为沿绳子方向上的分速度等于橡皮在竖直方向上的分速度,所以橡皮在竖直方向上速度为vsinα,因为θ逐渐增大,所以橡皮在竖直方向上做加速运动,故B正确;
C、橡皮在水平方向上做匀速运动,竖直方向做加速运动,则合力在竖直方向上,合力与速度方向不在同一直线上,所以橡皮做曲线运动,故C错误;
D、根据平行四边形定则得:橡皮在图示位置时的速度大小为
=v
,故D错误.
故选AB
B、将铅笔与绳子接触的点的速度分解为沿绳方向和垂直于绳子方向,如图,则沿绳子方向上的分速度为vsinθ,因为沿绳子方向上的分速度等于橡皮在竖直方向上的分速度,所以橡皮在竖直方向上速度为vsinα,因为θ逐渐增大,所以橡皮在竖直方向上做加速运动,故B正确;
C、橡皮在水平方向上做匀速运动,竖直方向做加速运动,则合力在竖直方向上,合力与速度方向不在同一直线上,所以橡皮做曲线运动,故C错误;
D、根据平行四边形定则得:橡皮在图示位置时的速度大小为
v2+(vsinθ)2 |
sin2θ+1 |
故选AB
点评:解决本题的关键知道铅笔与绳子接触的点的速度在沿绳子方向上的分速度等于橡皮在竖直方向上的分速度,然后根据平行四边形定则进行求解.
练习册系列答案
相关题目