题目内容

【题目】如图所示,在E=103 V/m的竖直匀强电场中,有一光滑半圆形绝缘轨道QPN与一水平绝缘轨道MNN点平滑相接,半圆形轨道平面与电场线平行,其半径R=40 cm,N为半圆形轨道最低点,PQN圆弧的中点,一带负电q=104 C的小滑块质量m=10 g,与水平轨道间的动摩擦因数μ=0.4,位于N点右侧1.5 mM处,g10 m/s2,求:

(1)小滑块从M点到Q点重力和电场力分别做的功;

(2)要使小滑块恰能运动到半圆形轨道的最高点Q,则小滑块应以多大的初速度v0向左运动?

(3)在第(2)问的情况下,小滑块通过P点时对轨道的压力是多大?

【答案】(1)-0.08J,-0.08J;(2)8m/s;(3)0.6N

【解析】

(1)小滑块从M点到Q点重力做的功

电场力的功

(2)设滑块到达Q点时速度为v,则由牛顿第二定律得:mg+qE=m

滑块从开始运动至到达Q点过程中,由动能定理得:
-mg2R-qE2R-μ(mg+qE)x=mv2-mv02
联立方程组,解得:v0=8m/s;
(3)设滑块到达P点时速度为v′,则从开始运动至到达P点过程中,由动能定理得:

-(mg+qE)R-μ(qE+mg)x=mv′2-mv02
又在P点时,由牛顿第二定律得:FN=m
代入数据解得:FN=0.6N
根据牛顿第三定律则小滑块通过P点时对轨道的压力是0.6N,方向水平向左;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网