题目内容
【题目】如图所示的xOy坐标系中,y轴右侧空间存在范围足够大的匀强磁场,磁感应强度大小为B,方向垂直于xOy平面向里.P点的坐标为(﹣6L,0),Q1、Q2两点的坐标分别为(0,3L),(0,﹣3L).坐标为(﹣L,0)处的C点固定一平行于y轴放置一足够长的绝缘弹性挡板,带电粒子与弹性绝缘挡板碰撞前后,沿y方向分速度不变,沿x方向分速度反向,大小不变.带负电的粒子质量为m,电量为q,不计粒子所受重力.若粒子在P点沿PQ1方向进入磁场,经磁场运动后,求:
(1)只与挡板碰撞一次并能回到P点的粒子初速度大小;
(2)粒子能否经过坐标原点O之后再回到P点;
(3)只与挡板碰撞三次并能回到P点的粒子初速度大小以及这种情况下挡板的长度至少为多少.
【答案】
(1)解:粒子与挡板只碰撞一次,粒子运动的轨迹如图一所示,粒子运动的轨道半径为R,碰撞前后出入磁场两点之间的距离为L
则:根据几何关系可得:4Rcosθ﹣L=6L,其中:cosθ=
解得:R= ①
根据半径公式:R= ②
联立①②式可得:v=
答:只与挡板碰撞一次并能回到P点的粒子初速度大小为 ;
(2)设粒子在x轴上方与挡板碰撞n次,
每次圆周运动,粒子位置沿y轴向下平移的距离为2Rcosθ,
与挡板相碰后,粒子位置向上平移的距离为L,
一次周期性运动粒子沿y轴共向下平移为2Rcosθ﹣L,
要使粒子经过坐标原点O之后再回到P点需满足:
(n﹣1)(2Rcosθ﹣L)+2Rcosθ=3L (n=2,3,4…) ③
联立②③式子可得:v= (n=2,3,4…)
所以,只要粒子速度满足v= (n=2,3,4…)粒子就可以经过坐标原点O之后再回到P点(图二为n=2时的过程图)
答:粒子能经过坐标原点O之后再回到P点;
(3)若与挡板碰撞三次,如图二所示,设挡板的长度L0
根据几何关系可得:3(2Rcosθ﹣L)+2Rcosθ=6L
解得:R= ④
根据半径公式:R= 可得:v= ⑤
联立④⑤式子可得:挡板的长度的最小值L0=2(2Rcosθ﹣L)=2.5L
答:只与挡板碰撞三次并能回到P点的粒子初速度大小以及这种情况下挡板的长度至少为2.5L.
【解析】(1)首先根据题目已知作出粒子运动的轨迹图,求解带电粒子在匀强磁场中运动的情况,先结合几何关系求出粒子在磁场中运动的轨道半径,由洛伦兹力提供向心力找出半径公式,根据半径公式求出粒子的速度.
(2)粒子进入磁场后做周期性运动,分析粒子一个周期的运动情况,根据几何关系以及对称性.即可求出粒子经过坐标原点O之后再回到P点所满足的关系式;
(3)粒子与挡板碰撞三次并能回到P点,作出轨迹图,结合几何关系,运用半径公式进行求解.