ÌâÄ¿ÄÚÈÝ
£¨2009?½ËÕ£©1932Ä꣬ÀÍÂ×˹ºÍÀûÎÄ˹Éè¼Æ³öÁË»ØÐý¼ÓËÙÆ÷£®»ØÐý¼ÓËÙÆ÷µÄ¹¤×÷ÔÀíÈçͼËùʾ£¬ÖÃÓÚ¸ßÕæ¿ÕÖеÄDÐνðÊôºÐ°ë¾¶ÎªR£¬Á½ºÐ¼äµÄÏÁ·ìºÜС£¬´øµçÁ£×Ó´©¹ýµÄʱ¼ä¿ÉÒÔºöÂÔ²»¼Æ£®´Å¸ÐӦǿ¶ÈΪBµÄÔÈÇ¿´Å³¡ÓëºÐÃæ´¹Ö±£®A´¦Á£×ÓÔ´²úÉúµÄÁ£×Ó£¬ÖÊÁ¿Îªm¡¢µçºÉÁ¿Îª+q£¬ÔÚ¼ÓËÙÆ÷Öб»¼ÓËÙ£¬¼ÓËÙµçѹΪU£®¼ÓËÙ¹ý³ÌÖв»¿¼ÂÇÏà¶ÔÂÛЧӦºÍÖØÁ¦×÷Óã®
£¨1£©ÇóÁ£×ÓµÚ2´ÎºÍµÚ1´Î¾¹ýÁ½DÐκмäÏÁ·ìºó¹ìµÀ°ë¾¶Ö®±È£»
£¨2£©ÇóÁ£×Ó´Ó¾²Ö¹¿ªÊ¼¼ÓËÙµ½³ö¿Ú´¦ËùÐèµÄʱ¼ät£»
£¨3£©Êµ¼ÊʹÓÃÖУ¬´Å¸ÐӦǿ¶ÈºÍ¼ÓËٵ糡ƵÂʶ¼ÓÐ×î´óÖµµÄÏÞÖÆ£®Èôijһ¼ÓËÙÆ÷´Å¸ÐӦǿ¶ÈºÍ¼ÓËٵ糡ƵÂʵÄ×î´óÖµ·Ö±ðΪBm¡¢fm£¬ÊÔÌÖÂÛÁ£×ÓÄÜ»ñµÃµÄ×î´ó¶¯ÄÜEkm£®
£¨1£©ÇóÁ£×ÓµÚ2´ÎºÍµÚ1´Î¾¹ýÁ½DÐκмäÏÁ·ìºó¹ìµÀ°ë¾¶Ö®±È£»
£¨2£©ÇóÁ£×Ó´Ó¾²Ö¹¿ªÊ¼¼ÓËÙµ½³ö¿Ú´¦ËùÐèµÄʱ¼ät£»
£¨3£©Êµ¼ÊʹÓÃÖУ¬´Å¸ÐӦǿ¶ÈºÍ¼ÓËٵ糡ƵÂʶ¼ÓÐ×î´óÖµµÄÏÞÖÆ£®Èôijһ¼ÓËÙÆ÷´Å¸ÐӦǿ¶ÈºÍ¼ÓËٵ糡ƵÂʵÄ×î´óÖµ·Ö±ðΪBm¡¢fm£¬ÊÔÌÖÂÛÁ£×ÓÄÜ»ñµÃµÄ×î´ó¶¯ÄÜEkm£®
·ÖÎö£º£¨1£©ÏÁ·ìÖмÓËÙʱ¸ù¾Ý¶¯Äܶ¨Àí£¬¿ÉÇó³ö¼ÓËÙºóµÄËٶȣ¬È»ºó¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬ÍƳö°ë¾¶±í´ïʽ£»
£¨2£©¼ÙÉèÁ£×ÓÔ˶¯nȦºóµ½´ï³ö¿Ú£¬Ôò¼ÓËÙÁË2n´Î£¬ÕûÌåÔËÓö¯Äܶ¨Àí£¬ÔÙÓëÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬Á£×ÓÔ˶¯µÄ¹ÌÓÐÖÜÆÚ¹«Ê½ÁªÁ¢Çó½â£»
£¨3£©Bm¶ÔÓ¦Á£×ÓÔڴų¡ÖÐÔ˶¯¿ÉÌṩµÄ×î´óƵÂÊ£¬fm¶ÔÓ¦¼ÓËٵ糡¿ÉÌṩµÄ×î´óƵÂÊ£¬Ñ¡Á½Õß½ÏСÕߣ¬×÷ΪÆ乲ͬƵÂÊ£¬È»ºóÇó´ËƵÂÊϵÄ×î´ó¶¯ÄÜ£®
£¨2£©¼ÙÉèÁ£×ÓÔ˶¯nȦºóµ½´ï³ö¿Ú£¬Ôò¼ÓËÙÁË2n´Î£¬ÕûÌåÔËÓö¯Äܶ¨Àí£¬ÔÙÓëÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬Á£×ÓÔ˶¯µÄ¹ÌÓÐÖÜÆÚ¹«Ê½ÁªÁ¢Çó½â£»
£¨3£©Bm¶ÔÓ¦Á£×ÓÔڴų¡ÖÐÔ˶¯¿ÉÌṩµÄ×î´óƵÂÊ£¬fm¶ÔÓ¦¼ÓËٵ糡¿ÉÌṩµÄ×î´óƵÂÊ£¬Ñ¡Á½Õß½ÏСÕߣ¬×÷ΪÆ乲ͬƵÂÊ£¬È»ºóÇó´ËƵÂÊϵÄ×î´ó¶¯ÄÜ£®
½â´ð£º½â£º£¨1£©ÉèÁ£×ÓµÚ1´Î¾¹ýÏÁ·ìºóµÄ°ë¾¶Îªr1£¬ËÙ¶ÈΪv1
qU=
mv12
qv1B=m
½âµÃ r1=
ͬÀí£¬Á£×ÓµÚ2´Î¾¹ýÏÁ·ìºóµÄ°ë¾¶ r2=
Ôò r2£ºr1=
£º1£®
£¨2£©ÉèÁ£×Óµ½³ö¿Ú´¦±»¼ÓËÙÁËnȦ
½âµÃ t=
£®
£¨3£©¼ÓËٵ糡µÄƵÂÊÓ¦µÈÓÚÁ£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄƵÂÊ£¬¼´f=
µ±´Å³¡¸ÐӦǿ¶ÈΪBmʱ£¬¼ÓËٵ糡µÄƵÂÊӦΪfBm=
Á£×ӵĶ¯ÄÜEK=
mv2
µ±fBm¡Üfmʱ£¬Á£×ÓµÄ×î´ó¶¯ÄÜÓÉBm¾ö¶¨qvmBm=m
½âµÃEkm=
µ±fBm¡Ýfmʱ£¬Á£×ÓµÄ×î´ó¶¯ÄÜÓÉfm¾ö¶¨vm=2¦ÐfmR½âµÃ EKm=2¦Ð2m
R2
´ð£º£¨1£©r2£ºr1=
£º1 £¨2£©t=
£¨3£©µ±fBm¡Üfmʱ£¬EKm=
£»µ±fBm¡Ýfmʱ£¬EKm=2¦Ð2m
R2£®
qU=
1 |
2 |
qv1B=m
| ||
r1 |
½âµÃ r1=
1 |
B |
|
ͬÀí£¬Á£×ÓµÚ2´Î¾¹ýÏÁ·ìºóµÄ°ë¾¶ r2=
1 |
B |
|
Ôò r2£ºr1=
2 |
£¨2£©ÉèÁ£×Óµ½³ö¿Ú´¦±»¼ÓËÙÁËnȦ
|
½âµÃ t=
¦ÐBR2 |
2U |
£¨3£©¼ÓËٵ糡µÄƵÂÊÓ¦µÈÓÚÁ£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄƵÂÊ£¬¼´f=
qB |
2¦Ðm |
µ±´Å³¡¸ÐӦǿ¶ÈΪBmʱ£¬¼ÓËٵ糡µÄƵÂÊӦΪfBm=
qBm |
2¦Ðm |
Á£×ӵĶ¯ÄÜEK=
1 |
2 |
µ±fBm¡Üfmʱ£¬Á£×ÓµÄ×î´ó¶¯ÄÜÓÉBm¾ö¶¨qvmBm=m
| ||
R |
½âµÃEkm=
q2
| ||
2m |
µ±fBm¡Ýfmʱ£¬Á£×ÓµÄ×î´ó¶¯ÄÜÓÉfm¾ö¶¨vm=2¦ÐfmR½âµÃ EKm=2¦Ð2m
f | 2 m |
´ð£º£¨1£©r2£ºr1=
2 |
¦ÐBR2 |
2U |
q2
| ||
2m |
f | 2 m |
µãÆÀ£º´ËÌâÊÇ´øµçÁ£×ÓÔÚ¸´ºÏ³¡ÖÐÔ˶¯Ó붯Äܶ¨ÀíµÄÁé»îÓ¦Ó㬱¾ÌâÿһÎʶ¼±È½ÏÐÂÓ±£¬ÐèҪѧÉú·´¸´×ÁÄ¥½â´ð¹ý³Ì£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿