题目内容
(14分)在游乐场中,有一种大型游戏机叫“跳楼机”.参加游戏的游客被安全带固定在座椅上,由电动机将座椅沿光滑的竖直轨道提升到离地面40m高处,然后由静止释放.为研究方便,可以认为座椅沿轨道做自由落体运动1.2 s后,开始受到恒定阻力而立即做匀减速运动,且下落到离地面4m高处时速度刚好减小到零.然后再让座椅以相当缓慢的速度稳稳下落,将游客送回地面.(取g=10m/s2)
求:(1)座椅在自由下落结束时刻的速度是多大?
(2)座椅在匀减速阶段的时间是多少?
(3)在匀减速阶段,座椅对游客的作用力大小是游客体重的多少倍?
求:(1)座椅在自由下落结束时刻的速度是多大?
(2)座椅在匀减速阶段的时间是多少?
(3)在匀减速阶段,座椅对游客的作用力大小是游客体重的多少倍?
(1)12m/s
(2)4.8 s
(3)1.25倍
(2)4.8 s
(3)1.25倍
(1)设座椅在自由下落结束时刻的速度为V,下落时间t1=1.2(S)
由V="gt1 " (2分)得:V="12(m/S) " (1分)
(2)设座椅自由下落和匀减速运动的总高度为h,总时间为t
∴ h=40-4=36(m) (2分)
由得:t=6(m) (2分)
设座椅匀减速运动的时间为t2, 则t2=t-t1=4.8(S) (2分)
(3)设座椅在匀减速阶段的加速度大小为a,座椅对游客的作用力大小为F
由, a=2.5(m/S2) (2分)
由牛顿第二定律: (2分) F="12.5m " (1分)
所以 (2分)
练习册系列答案
相关题目