题目内容
如图1所示,在倾角α=60°的斜面上放一个质量m的物体,用k=100N/m的轻弹簧平行斜面吊着.发现物体放在PQ间任何位置恰好都处于静止状态,测得AP=22cm,AQ=8cm,则物体与斜面间的最大静摩擦力等于多少?
解析:
物体位于Q点时,弹簧必处于压缩状态,对物体的弹簧TQ沿斜面向下;物体位于P点时,弹簧已处于拉伸状态,对物体的弹力Tp沿斜面向上.P,Q两点是物体静止于斜面上的临界位置,此时斜面对物体的静摩擦力都达到最大值fm,其方向分别沿斜面向下和向上.
【解】 作出物体在P、Q两位置时的受力图(图2),设弹簧原长为L0,则物体在Q和P两处的压缩量和伸长量分别为
x1=L0-AQ,x2=AP-L0.
根据胡克定律和物体沿斜面方向的力平衡条件可知:
kx1 =k(L0-AQ)=fm - mgsinα,
kx2 =k(AP-L0)=fm + mgsinα.
联立两式得
【说明】 题中最大静摩擦力就是根据物体的平衡条件确定的,所以画出P、Q两位置上物体的受力图是至关重要的.
练习册系列答案
相关题目