题目内容
【题目】竖直平面内的轨道ABCD由水平滑道AB与光滑的四分之一圆弧滑道CD组成AB恰与圆弧CD在C点相切,轨道放在光滑的水平面上,如图所示。一个质量为m的小物块(可视为质点)从轨道的A端以初动能E冲上水平滑道AB,沿着轨道运动,由DC弧滑下后停在水平滑道AB的中点。已知水平滑道AB长为L,轨道ABCD的质量为3m。求:
(1)小物块在水平滑道上受到摩擦力的大小。
(2)为了保证小物块不从滑道的D端离开滑道,圆弧滑道的半径R至少是多大?
(3)若增大小物块的初动能,使得小物块冲上轨道后可以达到最大高度是1.5R,试分析小物块最终能否停在滑道上?
【答案】(1);(2);(3)x=
【解析】
(1)小物块冲上轨道的初速度设为v,最终停在AB的中点,跟轨道有相同的速度,设为V,在这个过程中,系统动量守恒,有 ①
系统的动能损失用于克服摩擦做功,有
②
③
解得摩擦力
(2)若小物块刚好到达D处,此时它与轨道有共同的速度(与V相等),在此过程中系统总动能减少转化为内能(克服摩擦做功)和物块的势能,同理有
④
解得要使物块不从D点离开滑道,CD圆弧半径至少为
(3)设物块以初动能E′,冲上轨道,可以达到的最大高度是1.5R,物块从D点离开轨道后,其水平方向的速度总与轨道速度相等,达到最高点后,物块的速度跟轨道的速度相等(设为V2),同理有
⑤
物块从最高点落下后仍沿圆弧轨道运动回到水平轨道上沿BA方向运动,假设能沿BA运动x远,达到与轨道有相同的速度(等于V2),同理有,
⑥
解得
物块最终停在水平滑道AB上,距B为处。
练习册系列答案
相关题目