ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬ÔÚ·½ÏòÊúÖ±ÏòÉϵĴŸÐӦǿ¶ÈΪBµÄÔÈÇ¿´Å³¡ÖУ¬ÓÐÁ½Ìõ¹Ì¶¨¹â»¬µÄƽÐнðÊôµ¼¹ìMN¡¢PQ£¬µ¼¹ì×ã¹»³¤£¬¼ä¾àΪL£¬Æäµç×è²»¼Æ£¬µ¼¹ìƽÃæÓë´Å³¡´¹Ö±£®ab¡¢cdΪÁ½¸ù´¹Ö±ÓÚµ¼¹ìˮƽ·ÅÖõĽðÊô°ô£¬Æä½ÓÈë»Ø·Öеĵç×è¾ùΪR£®ÖÊÁ¿¾ùΪ m£®Óë½ðÊôµ¼¹ìƽÐеÄˮƽϸÏßÒ»¶Ë¹Ì¶¨£¬ÁíÒ»¶ËÓëcd°ôµÄÖеãÁ¬½Ó£¬Ï¸ÏßÄܳÐÊÜµÄ ×î´óÀÁ¦ÎªT£¬Ò»¿ªÊ¼Ï¸Ïß´¦ÓÚÉìֱ״̬£®ab°ôÔÚƽÐе¼¹ìµÄˮƽÀÁ¦µÄ×÷ÓÃÏÂÓɾ²Ö¹¿ªÊ¼ÒÔ¼ÓËÙ¶ÈaÏòÓÒ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬Á½¸ù½ðÊô°ôÔ˶¯¹ý³ÌÖÐʼÖÕÓëµ¼¹ì½Ó´¥Á¼ºÃÇÒÓëµ¼¹ìÏà´¹Ö±£®
£¨1£©Çó¾¶à³¤Ê±¼äϸÏß±»À¶Ï£¿
£¨2£©ÈôÔÚϸÏß±»À¶Ï˲¼ä³·È¥ÀÁ¦£¬ÊÔ˵Ã÷ÔÚÒÔºóµÄ¹ý³ÌÖУ¬abÓëcdÅõµÄÔ˶¯Çé¿ö£®
£¨3£©ÇóϸÏß±»À¶Ïºó£¬»Ø·Öй²²úÉú¶àÉÙµçÈÈ£¿cd°ôÏûºÄµÄµçÄܶà´ó£¿
£¨1£©Çó¾¶à³¤Ê±¼äϸÏß±»À¶Ï£¿
£¨2£©ÈôÔÚϸÏß±»À¶Ï˲¼ä³·È¥ÀÁ¦£¬ÊÔ˵Ã÷ÔÚÒÔºóµÄ¹ý³ÌÖУ¬abÓëcdÅõµÄÔ˶¯Çé¿ö£®
£¨3£©ÇóϸÏß±»À¶Ïºó£¬»Ø·Öй²²úÉú¶àÉÙµçÈÈ£¿cd°ôÏûºÄµÄµçÄܶà´ó£¿
·ÖÎö£º£¨1£©ab°ôÏòÓÒ×öÔȼÓËÙÔ˶¯½ø£¬´©¹ý»Ø·abcdµÄ´ÅͨÁ¿Ôö´ó£¬»Ø·ÖвúÉú¸ÐÓ¦µç¶¯Êƺ͸ÐÓ¦µçÁ÷£¬cdÊܵ½ÏòÓҵݲÅàÁ¦×÷Ó㬵±°²ÅàÁ¦´óСµÈÓÚϸÏßµÄ×î´óÀÁ¦Ê±£¬Ï¸Ïß±»À¶Ï£®¸ù¾Ý E=BLv¡¢I=
¡¢F=BIL£¬v=at£¬ÍƵ¼³ö°²ÅàÁ¦FµÄ±í´ïʽ£¬¸ù¾Ý¸ù¾ÝF=T£¬¼´¿ÉÇóµÃt£»
£¨2£©ÔÚϸÏß±»À¶Ï˲¼ä³·È¥ÀÁ¦Fºó£¬cd°ôÓÉÓÚÊܵ½ÏòÓҵݲÅàÁ¦Ò²ÏòÓÒ¿ªÊ¼×ö¼ÓËÙÔ˶¯£¬cdÇиî´Å¸ÐÏß²úÉú¸ÐÓ¦µç¶¯ÊÆ£¬»Ø·ÖÐ×ܵĸÐÓ¦µç¶¯Êƽ«¼õС£¬¸ÐÓ¦µçÁ÷¼õС£¬Ôòab×ö¼ÓËÙ¶ÈÖð½¥¼õСµÄ¼õËÙÔ˶¯£¬cd×ö¼ÓËÙ¶ÈÖð½¥¼õСµÄ¼ÓËÙÔ˶¯£¬×îÖÕÁ½ÕßÒÔ¹²Í¬ËÙ¶Èv¡ä×öÔÈËÙÖ±ÏßÔ˶¯£®
£¨3£©¸ù¾Ýϵͳ¶¯Á¿ÊغãÇóµÃÁ½°ôÔÈËÙÔ˶¯Ê±µÄËٶȣ¬¸ù¾ÝÄÜÁ¿ÊغãÇó½â»Ø·×ܹ²²úÉúµÄµçÈÈ£®cd°ôÏûºÄµÄµçÄܵÈÓÚÔö¼ÓµÄ¶¯ÄÜÓë²úÉúµÄÈÈÁ¿Ö®ºÍ£®
E |
2R |
£¨2£©ÔÚϸÏß±»À¶Ï˲¼ä³·È¥ÀÁ¦Fºó£¬cd°ôÓÉÓÚÊܵ½ÏòÓҵݲÅàÁ¦Ò²ÏòÓÒ¿ªÊ¼×ö¼ÓËÙÔ˶¯£¬cdÇиî´Å¸ÐÏß²úÉú¸ÐÓ¦µç¶¯ÊÆ£¬»Ø·ÖÐ×ܵĸÐÓ¦µç¶¯Êƽ«¼õС£¬¸ÐÓ¦µçÁ÷¼õС£¬Ôòab×ö¼ÓËÙ¶ÈÖð½¥¼õСµÄ¼õËÙÔ˶¯£¬cd×ö¼ÓËÙ¶ÈÖð½¥¼õСµÄ¼ÓËÙÔ˶¯£¬×îÖÕÁ½ÕßÒÔ¹²Í¬ËÙ¶Èv¡ä×öÔÈËÙÖ±ÏßÔ˶¯£®
£¨3£©¸ù¾Ýϵͳ¶¯Á¿ÊغãÇóµÃÁ½°ôÔÈËÙÔ˶¯Ê±µÄËٶȣ¬¸ù¾ÝÄÜÁ¿ÊغãÇó½â»Ø·×ܹ²²úÉúµÄµçÈÈ£®cd°ôÏûºÄµÄµçÄܵÈÓÚÔö¼ÓµÄ¶¯ÄÜÓë²úÉúµÄÈÈÁ¿Ö®ºÍ£®
½â´ð£º½â£º£¨1£©ÉèÉþ±»À¶Ïʱ»Ø·ÖеĵçÁ÷ΪI£¬ÉèÀ¶Ïʱ°ôabÖе綯ÊÆΪE£¬ËÙ¶ÈΪv£¬Ô˶¯Ê±¼äΪt£¬Ôò
E=BLv
I=
v=at
cd°ôËùÊܵݲÅàÁ¦Îª F=BIL£¬
ÁªÁ¢½âµÃ£¬F=
ϸÏß¼´½«À¶Ïʱ£¬¶ÔcdÓУºT=F
½âµÃ£ºt=
£¨2£©ÔÚϸÏß±»À¶Ï˲¼ä³·È¥ÀÁ¦Fºó£¬cd°ôÓÉÓÚÊܵ½ÏòÓҵݲÅàÁ¦Ò²ÏòÓÒ¿ªÊ¼×ö¼ÓËÙÔ˶¯£¬cdÇиî´Å¸ÐÏß²úÉú¸ÐÓ¦µç¶¯ÊÆ£¬»Ø·ÖÐ×ܵĸÐÓ¦µç¶¯Êƽ«¼õС£¬¸ÐÓ¦µçÁ÷¼õС£¬ab×ö¼ÓËÙ¶ÈÖð½¥¼õСµÄ¼õËÙÔ˶¯£¬cd×ö¼ÓËÙ¶ÈÖð½¥¼õСµÄ¼ÓËÙÔ˶¯£¬×îÖÕÁ½ÕßÒÔ¹²Í¬ËÙ¶Èv¡ä×öÔÈËÙÖ±ÏßÔ˶¯£®
¹ÊÁ½¸Ë×ö¼ÓËÙ¶ÈÖð½¥¼õСµÄ¼õËÙÔ˶¯£¬cd×ö¼ÓËÙ¶ÈÖð½¥¼õСµÄ¼ÓËÙÔ˶¯£¬×îÖÕÁ½ÕßÒÔÏàͬµÄËÙ¶È×öÔÈËÙÖ±ÏßÔ˶¯£®
£¨3£©ÉèÁ½°ôÔÈËÙÔ˶¯Ê±µÄÏàͬËÙ¶ÈΪv¡ä£¬¾Ý¶¯Á¿ÊغãµÃ£º
mv=2mv¡ä
Ï߶Ϻó»Ø·ÖвúÉúµÄÈÈÄÜ
QB=
mv2-
¡Á2mv2
µÃ£ºQB=
cd°ôÏûºÄµÄµçÄÜ
EcdºÄ=¡÷Ekcd+Qcd
¶ø¡÷Ekcd=
mv2-0
Qcd=
QB
½âµÃ£ºEcdºÄ=
´ð£º
£¨1£©¾
ʱ¼äϸÏß±»À¶Ï£®
£¨2£©ÈôÔÚϸÏß±»À¶Ï˲¼ä³·È¥ÀÁ¦£¬ab×ö¼ÓËÙ¶ÈÖð½¥¼õСµÄ¼õËÙÔ˶¯£¬cd×ö¼ÓËÙ¶ÈÖð½¥¼õСµÄ¼ÓËÙÔ˶¯£¬×îÖÕÁ½ÕßÒÔ¹²Í¬ËÙ¶Èv¡®×öÔÈËÙÖ±ÏßÔ˶¯£®
£¨3£©Ï¸Ïß±»À¶Ïºó£¬»Ø·Öй²²úÉú
QBµçÈÈ£¬cd°ôÏûºÄµÄµçÄÜΪ
£®
E=BLv
I=
E |
2R |
v=at
cd°ôËùÊܵݲÅàÁ¦Îª F=BIL£¬
ÁªÁ¢½âµÃ£¬F=
B2L2at |
2R |
ϸÏß¼´½«À¶Ïʱ£¬¶ÔcdÓУºT=F
½âµÃ£ºt=
2TR |
aB2L2 |
£¨2£©ÔÚϸÏß±»À¶Ï˲¼ä³·È¥ÀÁ¦Fºó£¬cd°ôÓÉÓÚÊܵ½ÏòÓҵݲÅàÁ¦Ò²ÏòÓÒ¿ªÊ¼×ö¼ÓËÙÔ˶¯£¬cdÇиî´Å¸ÐÏß²úÉú¸ÐÓ¦µç¶¯ÊÆ£¬»Ø·ÖÐ×ܵĸÐÓ¦µç¶¯Êƽ«¼õС£¬¸ÐÓ¦µçÁ÷¼õС£¬ab×ö¼ÓËÙ¶ÈÖð½¥¼õСµÄ¼õËÙÔ˶¯£¬cd×ö¼ÓËÙ¶ÈÖð½¥¼õСµÄ¼ÓËÙÔ˶¯£¬×îÖÕÁ½ÕßÒÔ¹²Í¬ËÙ¶Èv¡ä×öÔÈËÙÖ±ÏßÔ˶¯£®
¹ÊÁ½¸Ë×ö¼ÓËÙ¶ÈÖð½¥¼õСµÄ¼õËÙÔ˶¯£¬cd×ö¼ÓËÙ¶ÈÖð½¥¼õСµÄ¼ÓËÙÔ˶¯£¬×îÖÕÁ½ÕßÒÔÏàͬµÄËÙ¶È×öÔÈËÙÖ±ÏßÔ˶¯£®
£¨3£©ÉèÁ½°ôÔÈËÙÔ˶¯Ê±µÄÏàͬËÙ¶ÈΪv¡ä£¬¾Ý¶¯Á¿ÊغãµÃ£º
mv=2mv¡ä
Ï߶Ϻó»Ø·ÖвúÉúµÄÈÈÄÜ
QB=
1 |
2 |
1 |
2 |
µÃ£ºQB=
mT2R2 |
B4L4 |
cd°ôÏûºÄµÄµçÄÜ
EcdºÄ=¡÷Ekcd+Qcd
¶ø¡÷Ekcd=
1 |
2 |
Qcd=
1 |
2 |
½âµÃ£ºEcdºÄ=
mT2R2 |
B4L4 |
´ð£º
£¨1£©¾
2TR |
aB2L2 |
£¨2£©ÈôÔÚϸÏß±»À¶Ï˲¼ä³·È¥ÀÁ¦£¬ab×ö¼ÓËÙ¶ÈÖð½¥¼õСµÄ¼õËÙÔ˶¯£¬cd×ö¼ÓËÙ¶ÈÖð½¥¼õСµÄ¼ÓËÙÔ˶¯£¬×îÖÕÁ½ÕßÒÔ¹²Í¬ËÙ¶Èv¡®×öÔÈËÙÖ±ÏßÔ˶¯£®
£¨3£©Ï¸Ïß±»À¶Ïºó£¬»Ø·Öй²²úÉú
1 |
2 |
mT2R2 |
B4L4 |
µãÆÀ£º±¾ÌâË«¸ËÄ£ÐÍ£¬µ±cd°ô²»¶¯Ê±£¬Ö»ÓÐab°ôÇиî´Å¸ÐÏß²úÉú¸ÐÓ¦µç¶¯ÊÆ£¬¹Ø¼üÒª»áÍƵ¼°²ÅàÁ¦µÄ±í´ïʽ£®µ±cd°ôÒ²Ô˶¯Ê±£¬¹Ø¼üÒªÕýÈ··ÖÎöÁ½°ôµÄÔ˶¯Çé¿ö£¬¸ù¾Ý¶¯Á¿ÊغãºÍÄÜÁ¿Êغã½áºÏÇó½âÈÈÁ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿