题目内容
在一半径r=5×108m的某星球的表面做一实验,装置如图所示,在一粗糙的水平面上放置一半圆形的光滑竖直轨道,半圆形轨道与水平面相切。一质量为m=1kg的小物块Q(可视为质点)在一水平向右的力F=2N作用下从A由静止开始向右运动,作用一段时间t后撤掉此力,物体在水平面上再滑动一段距离后滑上半圆形轨道。若到达B点的速度为m/s时,物体恰好滑到四分之一圆弧D处。已知A、B的距离L=3.0m,小物块与水平面间的动摩擦因数μ=0.2,半圆形轨道半径R=0.08m。
(1)求该星球表面的重力加速度g和该星球的第一宇宙速度v1;
(2)若物体能够到达C点,求力F作用的最智囊距离x。
(1)求该星球表面的重力加速度g和该星球的第一宇宙速度v1;
(2)若物体能够到达C点,求力F作用的最智囊距离x。
(1)(2)
试题分析:(1)小物块从B到D由动能定理,得:,代入数据得:
在近地表面做匀速圆周运动的速度为第一宇宙速度,根据牛顿第二定律,有:
解得:
(2)设在力F的作用时间内物体Q运动的位移为x,到达C点的速度vc;物体Q恰到最高点的条件是只有重力提供向心力,由牛顿第二定律,得:
从A到C,由动能定理得:
代入数据解得:
练习册系列答案
相关题目