题目内容
【题目】如图所示,质量为m的小球(可视为质点)用长为L的细线悬挂于O点,自由静止在A位置.现用水平力F缓慢地将小球从A拉到B位置而静止,细线与竖直方向夹角为θ=60°,此时细线的拉力为F1,然后放手让小球从静止返回,到A点时细线的拉力为F2,则( )
A.F1=F2=2mg
B.从A到B,拉力F做功为F1L
C.从B到A的过程中,小球受到的合外力大小不变
D.从B到A的过程中,小球重力的瞬时功率一直增大
【答案】A
【解析】
试题分析:A、在B点,根据平衡有:F1sin30°=mg,解得F1=2mg.
B到A,根据动能定理得,,根据牛顿第二定律得,,联立两式解得F2=2mg,故A正确.
B、从A到B,小球缓慢移动,根据动能定理得,WF﹣mgL(1﹣cos60°)=0,解得,故B错误.
C、从B到A的过程中,小球的速度大小在变化,径向的合力在变化,故C错误.
D、在B点,重力的功率为零,在最低点,重力的方向与速度方向垂直,重力的功率为零,可知从B到A的过程中,重力的功率先增大后减小,故D错误.
故选:A.
练习册系列答案
相关题目