题目内容

一质量为m的小球以v0的速度与静止在光滑水平面上的质量为M的小球发生对心碰撞,碰撞时无机械能损失.求碰后两球的速度.

解析:设碰后m的速度为v1,M的速度为v2,由动量守恒定律得

mv0=mv1+Mv2                                                                                                

因碰撞时无机械能损失,总动能守恒

mv02=mv12+Mv22                                                                                   

联立求解方程①、②便可得到v1、v2,但该二元二次方程组用代入法解很麻烦,需变形后再解

①变为m(v0-v1)=Mv2                                                                                        

②变为m(v02-v12)= Mv22                                                                             

④除以③得

v0+v1=v2                                                                                                       

解①⑤组成的方程组可得v1=v0                                                               

v2=v0.                                                                ⑦

讨论:(1)m>M时,v1为正;m<M时,v1为负,

即被反向弹回;m=M时,v1=0,v2=v0,即碰后两球交换速度.

(2)当m>>M时,v1≈v0,v2≈2v0;

当m<<M时,v1≈-v0,v2≈0.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网