题目内容
一质量为m的小球以v0的速度与静止在光滑水平面上的质量为M的小球发生对心碰撞,碰撞时无机械能损失.求碰后两球的速度.
解析:设碰后m的速度为v1,M的速度为v2,由动量守恒定律得
mv0=mv1+Mv2 ①
因碰撞时无机械能损失,总动能守恒
mv02=mv12+Mv22 ②
联立求解方程①、②便可得到v1、v2,但该二元二次方程组用代入法解很麻烦,需变形后再解
①变为m(v0-v1)=Mv2 ③
②变为m(v02-v12)= Mv22 ④
④除以③得
v0+v1=v2 ⑤
解①⑤组成的方程组可得v1=v0 ⑥
v2=v0. ⑦
讨论:(1)m>M时,v1为正;m<M时,v1为负,
即被反向弹回;m=M时,v1=0,v2=v0,即碰后两球交换速度.
(2)当m>>M时,v1≈v0,v2≈2v0;
当m<<M时,v1≈-v0,v2≈0.