题目内容

20.如图甲,固定在光滑水平面上的正三角形金属线框,匝数n=20,总电阻R=2.5Ω,边长L=0.3m.处在两个半径均为r=$\frac{L}{3}$的圆形匀强磁场区域中.线框顶点与右侧圆中心重合,线框底边中点与左侧圆中心重合.磁感应强度B1垂直水平面向外,大小不变;B2垂直水平面向里,大小随时间变化,B1、B2的值如图乙所示.(π取3)(  )
A.通过线框中感应电流方向为逆时针方向
B.t=0时刻穿过线框的磁通量为0.1Wb
C.在t=0.6s内通过线框中的电量为0.006C
D.经过t=0.6s线框中产生的热量为0.06J

分析 根据楞次定律判断感应电流的方向;根据磁通量Φ=BS求解;由q=n$\frac{△Φ}{R}$求解电荷量;由Q=I2Rt求解热量.

解答 解:A、由磁感应强度B1垂直水平面向外,大小不变;B2垂直水平面向里,大小随时间增大,故线框的磁通量减小,由楞次定律可得,线框中感应电流方向为逆时针方向,故A正确;
B、t=0时刻穿过线框的磁通量为:∅=B1×$\frac{1}{2}$×πr2-B2×$\frac{1}{6}$×πr2=1×0.5×3×0.12-2×$\frac{1}{6}$×3×0.12Wb=0.005Wb,故B错误;
C、在t=0.6s内通过线框中的电量q=n$\frac{△Φ}{R}$=$\frac{20×(5-2)×\frac{1}{6}×3×0.{1}^{2}}{2.5}$C=0.12C,故C错误;
D、线框产生的感应电动势  E=n$\frac{△Φ}{△t}$=20×$\frac{(5-2)×\frac{1}{6}×3×0.{1}^{2}}{0.6}$V=0.5V
感应电流 I=$\frac{E}{R}$=$\frac{0.5}{2.5}$=0.2A
由Q=I2Rt=0.22×2.5×0.6J=0.06J,故D正确.
故选:AD.

点评 此题考查磁通量的定义,注意磁通量的正负,理解法拉第电磁感应定律与闭合电路欧姆定律的应用,及其焦耳定律,注意安培力大小计算与方向的判定.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网