ÌâÄ¿ÄÚÈÝ
ÔÚÈçͼËùʾµÄ×°ÖÃÖУ¬µçÔ´µç¶¯ÊÆΪE£¬ÄÚ×è²»¼Æ£¬¶¨Öµµç×èΪR1£¬»¬¶¯±ä×èÆ÷×ÜֵΪR2£¬ÖÃÓÚÕæ¿ÕÖеÄƽÐаåµçÈÝÆ÷ˮƽ·ÅÖ㬼«°å¼ä¾àΪd£®´¦ÔÚµçÈÝÆ÷ÖеÄÓ͵ÎAÇ¡ºÃ¾²Ö¹²»¶¯£¬´Ëʱ»¬¶¯±ä×èÆ÷µÄ»¬Æ¬PλÓÚÖеãλÖã®
£¨1£©Çó´ËʱµçÈÝÆ÷Á½¼«°å¼äµÄµçѹ£»
£¨2£©Çó¸ÃÓ͵εĵçÐÔÒÔ¼°Ó͵ÎËù´øµçºÉÁ¿qÓëÖÊÁ¿mµÄ±ÈÖµ£»
£¨3£©ÏÖ½«»¬¶¯±ä×èÆ÷µÄ»¬Æ¬PÓÉÖеãѸËÙÏòÉÏ»¬µ½Ä³Î»Öã¬Ê¹µçÈÝÆ÷ÉϵĵçºÉÁ¿±ä»¯ÁËQ1£¬Ó͵ÎÔ˶¯Ê±¼äΪt£¬ÔÙ½«»¬Æ¬´Ó¸ÃλÖÃѸËÙÏòÏ»¬¶¯µ½ÁíһλÖã¬Ê¹µçÈÝÆ÷ÉϵĵçºÉÁ¿Óֱ仯ÁËQ2£¬µ±Ó͵ÎÓÖÔ˶¯ÁË2tµÄʱ¼ä£¬Ç¡ºÃ»Øµ½ÔÀ´µÄ¾²Ö¹Î»Öã®ÉèÓ͵ÎÔÚÔ˶¯¹ý³ÌÖÐδÓ뼫°å½Ó´¥£¬»¬¶¯±ä×èÆ÷»¬¶¯ËùÓÃʱ¼äÓëµçÈÝÆ÷³äµç¡¢·ÅµçËùÓÃʱ¼ä¾ùºöÂÔ²»¼Æ£®Çó£ºQ1ÓëQ2µÄ±ÈÖµ£®
£¨1£©Çó´ËʱµçÈÝÆ÷Á½¼«°å¼äµÄµçѹ£»
£¨2£©Çó¸ÃÓ͵εĵçÐÔÒÔ¼°Ó͵ÎËù´øµçºÉÁ¿qÓëÖÊÁ¿mµÄ±ÈÖµ£»
£¨3£©ÏÖ½«»¬¶¯±ä×èÆ÷µÄ»¬Æ¬PÓÉÖеãѸËÙÏòÉÏ»¬µ½Ä³Î»Öã¬Ê¹µçÈÝÆ÷ÉϵĵçºÉÁ¿±ä»¯ÁËQ1£¬Ó͵ÎÔ˶¯Ê±¼äΪt£¬ÔÙ½«»¬Æ¬´Ó¸ÃλÖÃѸËÙÏòÏ»¬¶¯µ½ÁíһλÖã¬Ê¹µçÈÝÆ÷ÉϵĵçºÉÁ¿Óֱ仯ÁËQ2£¬µ±Ó͵ÎÓÖÔ˶¯ÁË2tµÄʱ¼ä£¬Ç¡ºÃ»Øµ½ÔÀ´µÄ¾²Ö¹Î»Öã®ÉèÓ͵ÎÔÚÔ˶¯¹ý³ÌÖÐδÓ뼫°å½Ó´¥£¬»¬¶¯±ä×èÆ÷»¬¶¯ËùÓÃʱ¼äÓëµçÈÝÆ÷³äµç¡¢·ÅµçËùÓÃʱ¼ä¾ùºöÂÔ²»¼Æ£®Çó£ºQ1ÓëQ2µÄ±ÈÖµ£®
£¨1£©µç·ÖеĵçÁ÷I=
ƽÐаåµçÈÝÆ÷Á½¶ËµÄµçѹU=
=
E£®
£¨2£©µçÈÝÉÏ°åËÙдÕýµç£¬Ó͵δ¦ÓÚ¾²Ö¹×´Ì¬£¬µç³¡Á¦ÏòÉÏ£¬ÔòÓ͵δø¸ºµç£®¶ÔÓ͵ÎÊÜÁ¦·ÖÎö£¬µÃFµç-mg=0£¬¼´
=mg£¬ËùÒÔ
=
£®
£¨3£©ÉèµçÈÝÆ÷µÄµçÈÝΪC£¬¼«°åÔÀ´¾ßÓеĵçºÉÁ¿ÎªQ£¬µçÈÝÆ÷ÉϵĵçÁ¿±ä»¯Q1ºó£¬Ó͵ÎÔڵ糡ÖÐÏòÉÏ×ö³õËÙ¶ÈΪÁãµÄÔȼÓËÙÖ±ÏßÔ˶¯£¬tÃëÄ©Ó͵εÄËÙ¶ÈΪv1¡¢Î»ÒÆΪs£¬°å¼äµÄµçѹ
U1=
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
Fµç1-mg=ma1£¬
-mg=ma1
¸ù¾ÝÔ˶¯Ñ§¹«Ê½µÃs=
a1t2£¬v1=a1t
µçÈÝÆ÷ÉϵĵçÁ¿Óֱ仯ÁËQ2ºó£¬Ó͵ÎÔڵ糡ÖÐÏòÉÏ×öÔȼõËÙÖ±ÏßÔ˶¯£¬2tÃëĩλÒÆΪ-s£®
¼«°å¼äµÄµçѹΪU2=
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
mg-Fµç2=ma2£¬mg-
=ma2
¸ù¾ÝÔ˶¯Ñ§¹«Ê½µÃ-s=2v1t-
a2£¨2t£©2
½âµÃ£º
=
£®
´ð£º£¨1£©´ËʱµçÈÝÆ÷Á½¼«°å¼äµÄµçѹΪ
E£®¡¡
£¨2£©Ó͵δø¸ºµç£¬Ó͵ÎËù´øµçºÉÁ¿qÓëÖÊÁ¿mµÄ±ÈֵΪ
£®
£¨3£©Q1ÓëQ2µÄ±ÈֵΪ4£º9£®
E | ||
R1+
|
ƽÐаåµçÈÝÆ÷Á½¶ËµÄµçѹU=
| ||
R1+
|
R2 |
2R1+R2 |
£¨2£©µçÈÝÉÏ°åËÙдÕýµç£¬Ó͵δ¦ÓÚ¾²Ö¹×´Ì¬£¬µç³¡Á¦ÏòÉÏ£¬ÔòÓ͵δø¸ºµç£®¶ÔÓ͵ÎÊÜÁ¦·ÖÎö£¬µÃFµç-mg=0£¬¼´
| ||
(R1+
|
q |
m |
gd(2R1+R2) |
ER2 |
£¨3£©ÉèµçÈÝÆ÷µÄµçÈÝΪC£¬¼«°åÔÀ´¾ßÓеĵçºÉÁ¿ÎªQ£¬µçÈÝÆ÷ÉϵĵçÁ¿±ä»¯Q1ºó£¬Ó͵ÎÔڵ糡ÖÐÏòÉÏ×ö³õËÙ¶ÈΪÁãµÄÔȼÓËÙÖ±ÏßÔ˶¯£¬tÃëÄ©Ó͵εÄËÙ¶ÈΪv1¡¢Î»ÒÆΪs£¬°å¼äµÄµçѹ
U1=
Q+Q1 |
C |
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
Fµç1-mg=ma1£¬
(Q+Q1)q |
Cd |
¸ù¾ÝÔ˶¯Ñ§¹«Ê½µÃs=
1 |
2 |
µçÈÝÆ÷ÉϵĵçÁ¿Óֱ仯ÁËQ2ºó£¬Ó͵ÎÔڵ糡ÖÐÏòÉÏ×öÔȼõËÙÖ±ÏßÔ˶¯£¬2tÃëĩλÒÆΪ-s£®
¼«°å¼äµÄµçѹΪU2=
Q+Q1+Q2 |
C |
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
mg-Fµç2=ma2£¬mg-
(Q+Q1-Q2)q |
Cd |
¸ù¾ÝÔ˶¯Ñ§¹«Ê½µÃ-s=2v1t-
1 |
2 |
½âµÃ£º
Q1 |
Q2 |
4 |
9 |
´ð£º£¨1£©´ËʱµçÈÝÆ÷Á½¼«°å¼äµÄµçѹΪ
R2 |
2R1+R2 |
£¨2£©Ó͵δø¸ºµç£¬Ó͵ÎËù´øµçºÉÁ¿qÓëÖÊÁ¿mµÄ±ÈֵΪ
gd(2R1+R2) |
ER2 |
£¨3£©Q1ÓëQ2µÄ±ÈֵΪ4£º9£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿