题目内容

如图所示,长l的细绳一端系质量m的小球,另一端固定于O点,细绳所能承受拉力的最大值是7mg.现将小球拉至水平并由静止释放,又知图中O′点有一小钉,为使小球可绕O′点做竖直面内的圆周运动.试求OO′的长度d与θ角应满足的关系(设绳与小钉O′相互作用中无能量损失).

 

 

解析:本题考查圆周运动、动能定理、机械能守恒的应用,在临界状态的受力和特点是本题的难点,

设小球能绕O′点完成圆周运动,如图所示.其最高点为D,最低点为C.对于D点,依向心力公式有

   (1)(2分)

其中vD为D点速度,vD可由机械能守恒定律求知,取O点为重力势能的零势能位置,则

(2)(2分)

将(1)式与(2)式联立,解之可得(1分)

另依题意细绳上能承受的最大拉力不能超过7mg,由于在最低点C,绳所受拉力最大,故应以C点为研究对象,并有

(3)     (1分)    其中vC是C点速度,

可由机械能守恒定律求知(4) (2分)

将(3)式与(4)式联立,解之可得(1分)

(1分)

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网