ÌâÄ¿ÄÚÈÝ
18£®ÈçͼËùʾ£¬ÔÚÊúֱƽÃæÄÚ½¨Á¢OxyÖ±½Ç×ø±êϵ£¬ÔÚx=-$\sqrt{2}$d´¦Óд¹Ö±ÓÚxÖá×ã¹»´óµÄµ¯ÐÔ¾øÔµµ²°å£¬yÖá×ó²àºÍµ²°åÖ®¼ä´æÔÚÒ»ÔÈÇ¿µç³¡£¬µç³¡ÓëxÖḺ·½Ïò¼Ð½Ç¦È=45¡ã£¬yÖáÓÒ²àÓÐÒ»¸öÓнçÔÈÇ¿´Å³¡£¬´Å³¡·½Ïò´¹Ö±ÓÚÖ½ÃæÏòÀ´Å¸ÐӦǿ¶È´óСΪB£®ÔÚM£¨-$\frac{\sqrt{2}}{2}$d¡¢0£©´¦ÓÐÒ»¸öÖÊÁ¿Îªm¡¢µçºÉÁ¿Îª-qµÄÁ£×Ó£¬ÒÔijһ³õËÙ¶ÈÑس¡Ç¿·½ÏòÔ˶¯£®µ±Ëü´òµ½¾øÔµ°åÉÏNµãʱ£¬Á£×ÓÑØyÖá·½ÏòµÄËٶȲ»±ä£¬xÖá·½ÏòËٶȴóС²»±ä¡¢·½Ïò·´Ïò£¬Ò»¶Îʱ¼äºó£¬ÒÔ$\sqrt{2}$vµÄËٶȴ¹Ö±ÓÚyÖá½øÈë´Å³¡£¬Ç¡ºÃ²»´Ó´Å³¡Óұ߽ç·É³ö£®Á£×ÓµÄÖØÁ¦²»¼Æ£®£¨1£©Çó´Å³¡µÄ¿í¶ÈL£»
£¨2£©ÇóÔÈÇ¿µç³¡µÄ³¡Ç¿´óСE£»
£¨3£©ÈôÁíÒ»¸öͬÑùµÄÁ£×ÓÒÔËÙ¶Èv´ÓMµãÑس¡Ç¿·½ÏòÔ˶¯£¬¾Ê±¼ätµÚÒ»´Î´Ó´Å³¡±ß½çÉÏPµã³öÀ´£¬Çóʱ¼ät£®
·ÖÎö £¨1£©¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦ºÍÁÙ½çÌõ¼þ£¬Óɼ¸ºÎ֪ʶÇóµÃÔ²ÖÜÔ˶¯µÄ°ë¾¶£¬¼´¿ÉÁªÁ¢·½³ÌÇó½âLµÄ´óС£»
£¨2£©Óɶ¯Äܶ¨Àí¼´¿ÉÇó³öµç³¡Ç¿¶ÈµÄ´óС£»
£¨3£©Ïȸù¾ÝÔ˶¯Ñ§µÄ¹«Ê½Çó³öÁ£×ÓÔڵ糡ÖÐÔ˶¯µÄʱ¼ä£¬È»ºóÓɼ¸ºÎ¹«Ê½t=$\frac{¦È}{2¦Ð}$TÇó³öÔ²ÖÜÔ˶¯µÄʱ¼ä£¬½ø¶øÇóµÃÔ˶¯µÄÁ½½×¶ÎµÄ×Üʱ¼ä£®
½â´ð ½â£º£¨1£©¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦ÓУº$\sqrt{2}qvB=\frac{m£¨\sqrt{2}v£©^{2}}{R}$
½âµÃ£º$R=\frac{\sqrt{2}mv}{qB}$
Á£×Ӹպò»À뿪´Å³¡µÄÌõ¼þΪ£ºL=R£¬¼´£º$L=\frac{\sqrt{2}mv}{qB}$
£¨2£©Èçͼ£¬ÉèÁ£×Ó´ÓAµã½øÈë´Å³¡£¬½«Æä´ÓNµãµ½AµãµÄÔ˶¯·Ö±ðÑØ×ŵ糡Ïߺʹ¹Ö±µç³¡Ïß·½Ïò·Ö½â£¬Á£×ÓÔÚÕâÁ½¸ö·½ÏòÉÏͨ¹ýµÄ¾àÀë·Ö±ðΪhºÍl£¬ÔÚAµãµÄÑØÕâÁ½¸ö·½ÏòµÄËٶȴóС¾ùΪv£®
Ñص糡Ïß·½ÏòÓУº$h=\frac{1}{2}¡Á\frac{qE}{m}•{t}^{2}=\frac{vt}{2}$
´¹Ö±Óڵ糡Ïß·½ÏòÓУºl=vt
Óɼ¸ºÎ¹ØϵÓУºl+h=2d
ÒÔÉϸ÷ʽÁªÁ¢µÃ£º$E=\frac{3m{v}^{2}}{4qd}$
£¨3£©Á£×Ó´ÓMµãÑص糡Ïß·½ÏòÏòÇ°Ô˶¯µÄ¾àÀëΪs
ÓÉv2=2as µÃ£º$s=\frac{{v}^{2}}{2•\frac{qE}{m}}=\frac{2}{3}d£¼d$
˵Ã÷Á£×Ó²»ÄÜ´òµ½¾øÔµ°åÉϾÍÒª·µ»Ø£¬Ô˶¯¹ý³ÌÈçͼ
´ÓPµã½øÈë´Å³¡Ê±µÄËÙÂÊΪv¡ä£¬ÓÉv¡ä2-v2=2ad
½âµÃ£º$v¡ä=\frac{\sqrt{10}}{2}v$
Á£×ÓÔڵ糡ÖÐÍù·µÔ˶¯µÄʱ¼äΪ£º${t}_{1}=\frac{v+v¡ä}{a}=\frac{£¨4+2\sqrt{10}£©d}{3v}$
Á£×ÓÔڴų¡×öÔ²ÖÜÔ˶¯µÄ°ë¾¶£º$R¡ä=\frac{mv¡ä}{qB}=\frac{\sqrt{10}mv}{2qB}$
ÒòΪR¡ä£¨1-cos45¡ã£©£¼L£¬ËùÒÔÁ£×Ó²»»á´Ó´Å³¡Óұ߽çÉä³ö£®
Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄÖÜÆÚ£º$T=\frac{2¦Ðm}{qB}$
Ôڴų¡ÖÐÔ˶¯µÄʱ¼äΪ£º${t}_{2}=\frac{T}{4}=\frac{¦Ðm}{2qB}$
Á£×Ó´ÓMµãÉä³öµ½µÚÒ»´Î´Ó´Å³¡ÖгöÀ´Ëù¾¹ýµÄʱ¼äΪ
t=t1+t2=$\frac{£¨4+2\sqrt{10}£©d}{3v}+\frac{¦Ðm}{2qB}$
´ð£º£¨1£©´Å³¡µÄ¿í¶È$\frac{\sqrt{2}mv}{qB}$£»
£¨2£©ÔÈÇ¿µç³¡µÄ³¡Ç¿´óСÊÇ$\frac{3m{v}^{2}}{4qd}$£»
£¨3£©Ê±¼äÊÇ$\frac{£¨4+2\sqrt{10}£©d}{3v}+\frac{¦Ðm}{2qB}$£®
µãÆÀ ¸ÃÌ⿼²é´øµçÁ£×ÓÔڴų¡Öк͵糡ÖеÄÔ˶¯£¬½â´ðµÄ¹Ø¼üÊÇÃ÷È·Á£×ÓµÄÔ˶¯¹æÂÉ£¬»³öÔ˶¯¹ì¼££¬È»ºó½áºÏͼÏóÖеļ¸ºÎ¹Øϵ£¬È·¶¨¹ì¼£µÄÔ²ÐÄÓë°ë¾¶£¬È»ºó½áºÏÅ£¶ÙµÚ¶þ¶¨Âɼ´¿ÉÇó½â£®
A£® | RM±ä´ó£¬ÇÒRÔ½´ó£¬Ì½²âÆ÷SÔ½ÁéÃô | B£® | RM±ä´ó£¬ÇÒRԽС£¬Ì½²âÆ÷SÔ½ÁéÃô | ||
C£® | RM±äС£¬ÇÒRÔ½´ó£¬Ì½²âÆ÷SÔ½ÁéÃô | D£® | RM±äС£¬ÇÒRԽС£¬Ì½²âÆ÷SÔ½ÁéÃô |
A£® | MÓëµØÇòÖÐÐÄÁ¬ÏßÔÚÏàµÈµÄʱ¼äÄÚת¹ýµÄ½Ç¶È½Ï´ó | |
B£® | MµÄ»úеÄÜ´óÓÚNµÄ»úеÄÜ | |
C£® | M¡¢NµÄËٶȾù´óÓÚµÚÒ»ÓîÖæËÙ¶È | |
D£® | MÔÚÏàͬµÄʱ¼äÄÚ¾¹ýµÄ·³Ì½Ï¶Ì |
A£® | ¼òгÔ˶¯µÄÖÜÆÚÓëÕñ·ùÎÞ¹Ø | |
B£® | ÔÚµ¯»ÉÕñ×Ó×ö¼òгÔ˶¯µÄ»Ø¸´Á¦±í´ïʽF=-kxÖУ¬FΪÕñ¶¯ÎïÌåÊܵ½µÄºÏÍâÁ¦£¬kΪµ¯»ÉµÄ¾¢¶ÈϵÊý | |
C£® | ÔÚ²¨´«²¥·½ÏòÉÏ£¬Ä³¸öÖʵãµÄÕñ¶¯ËٶȾÍÊDz¨µÄ´«²¥ËÙ¶È | |
D£® | ÔÚË«·ì¸ÉÉæʵÑéÖУ¬Í¬ÖÖÌõ¼þÏÂÓÃ×Ϲâ×öʵÑé±Èºì¹â×öʵÑéµÃµ½µÄÌõÎƸü¿í |
A£® | µ¥¾§ÌåµÄËùÓÐÎïÀíÐÔÖʶ¼¾ßÓи÷ÏòÒìÐÔ | |
B£® | Ðü¸¡ÔÚÒºÌåÖеĻ¨·Û¿ÅÁ£µÄÎÞ¹æÔòÔ˶¯ÊÇÈÈÔ˶¯ | |
C£® | ÏàͬζÈÏ£¬Çâ·Ö×ÓµÄƽ¾ù¶¯ÄÜÒ»¶¨µÈÓÚÓÚÑõ·Ö×ÓµÄƽ¾ù¶¯ÄÜ | |
D£® | Ëæ×Å·Ö×Ó¼ä¾àÀëÔö´ó£¬·Ö×Ó¼ä×÷ÓÃÁ¦¼õС£¬·Ö×ÓÊÆÄÜÒ²¼õС |
A£® | ÓÐ×ÔÉ϶øϵÄ΢ÈõµçÁ÷ | |
B£® | ÓÐ×Ô϶øÉϵÄ΢ÈõµçÁ÷ | |
C£® | ÓÐ΢ÈõµçÁ÷£¬·½ÏòÊÇÏÈ×ÔÉ϶øÏ£¬ºó×Ô϶øÉÏ | |
D£® | ÓÐ΢ÈõµçÁ÷£¬·½ÏòÊÇÏÈ×Ô϶øÉÏ£¬ºó×ÔÉ϶øÏ |
A£® | $\frac{{{E_{k1}}}}{{{E_{k2}}}}$ | B£® | $\frac{{{E_{k2}}}}{{{E_{k1}}}}$ | C£® | $\sqrt{{{£¨{\frac{{{E_{k1}}}}{{{E_{k2}}}}}£©}^3}}$ | D£® | $\sqrt{{{£¨{\frac{{{E_{k2}}}}{{{E_{k1}}}}}£©}^3}}$ |
A£® | ÕâÁ½¿ÅÏàײÎÀÐÇÔÚͬһ¹ìµÀÉÏ | |
B£® | ÕâÁ½¿ÅÏàײÎÀÐǵÄÖÜÆÚ¡¢ÏòÐļÓËٶȴóСһ¶¨ÏàµÈ | |
C£® | Á½ÏàײÎÀÐǵÄÔËÐÐËٶȾù´óÓÚ¹ú¼Ê¿Õ¼äÕ¾µÄËÙ¶È | |
D£® | Á½ÏàײÎÀÐǵÄÔËÐÐÖÜÆÚ¾ù´óÓÚ¹ú¼Ê¿Õ¼äÕ¾µÄÔËÐÐÖÜÆÚ |
A£® | Ek1£ºEk2£ºEk3=9£º4£º1 | B£® | Ek1£ºEk2£ºEk3=25£º9£º1 | ||
C£® | Ek1£ºEk2£ºEk3=81£º16£º1 | D£® | Ek1£ºEk2£ºEk3=36£º9£º4 |