ÌâÄ¿ÄÚÈÝ
£¨2010?Ô½ÐãÇøÈýÄ££©ÈçͼËùʾ£¬Á£×ÓÔ´S¿ÉÒÔ²»¶Ï²úÉúÖÊÁ¿Îªm¡¢µçºÉÁ¿Îª+qµÄÁ£×Ó£¨ÖØÁ¦²»¼Æ£©£®Á£×Ó´ÓO1¿×Æ®½øÒ»¸öˮƽ·½ÏòµÄ¼ÓËٵ糡£¨³õËÙ²»¼Æ£©£¬ÔÙ¾¹ýС¿×O2½øÈëÏ໥Õý½»µÄÔÈÇ¿µç³¡ºÍÔÈÇ¿´Å³¡ÇøÓò£¬µç³¡Ç¿¶È´óСΪE£¬´Å¸ÐӦǿ¶È´óСΪB1£¬·½ÏòÈçͼ£®ÐéÏßPQ¡¢MNÖ®¼ä´æÔÚ×ÅˮƽÏòÓÒµÄÔÈÇ¿´Å³¡£¬´Å³¡·¶Î§×ã¹»´ó£¬´Å¸ÐӦǿ¶È´óСΪB2£®Ò»¿éÕÛ³ÉÖ±½ÇµÄÓ²ÖÊËÜÁÏƬabc£¨²»´øµç£¬¿í¶ÈºÍºñ¶È¶¼ºÜС¿ÉºöÂÔ£©·ÅÖÃÔÚPQ¡¢MNÖ®¼ä£¬½ØÃæͼÈçͼ£¬a¡¢cÁ½µã·Ö±ðλÓÚPQ¡¢MNÉÏ£¬ab=bc=L£¬a=45¡ã£®Á£×ÓÄÜÑØͼÖÐÐéÏßO2O3µÄÑÓ³¤Ïß½øÈëPQ¡¢MNÖ®¼äµÄÇøÓò£®
£¨1£©Çó¼ÓËÙµçѹU1£»
£¨2£©¼ÙÉèÁ£×ÓÓëÓ²ÖÊËÜÁÏƬÏàÅöºó£¬ËٶȴóС²»±ä£¬·½Ïò×ñѹâµÄ·´É䶨ÂÉ£¬ÄÇôÁ£×ÓÓëËÜÁÏƬµÚÒ»´ÎÏàÅöºóµ½µÚ¶þ´ÎÏàÅöÇ°×öʲôÔ˶¯£¿
£¨3£©Á£×ÓÔÚPQ¡¢MNÖ®¼äµÄÇøÓòÖÐÔ˶¯µÄ×Üʱ¼ätºÍ×Ü·³Ìs£®
£¨1£©Çó¼ÓËÙµçѹU1£»
£¨2£©¼ÙÉèÁ£×ÓÓëÓ²ÖÊËÜÁÏƬÏàÅöºó£¬ËٶȴóС²»±ä£¬·½Ïò×ñѹâµÄ·´É䶨ÂÉ£¬ÄÇôÁ£×ÓÓëËÜÁÏƬµÚÒ»´ÎÏàÅöºóµ½µÚ¶þ´ÎÏàÅöÇ°×öʲôÔ˶¯£¿
£¨3£©Á£×ÓÔÚPQ¡¢MNÖ®¼äµÄÇøÓòÖÐÔ˶¯µÄ×Üʱ¼ätºÍ×Ü·³Ìs£®
·ÖÎö£º£¨1£©Á£×Ó¾¹ý¸´ºÏ³¡Ê±£¬µç³¡Á¦ÏòÏ£¬ÂåÂ××ÈÁ¦ÏòÉÏ£¬¶¼ÓëËٶȴ¹Ö±£¬¹ÊºÏÁ¦ÎªÁ㣬¸ù¾ÝƽºâÌõ¼þÁÐʽÇó½âËٶȣ»
£¨2£©Á£×ÓÓë´Å³¡µÚÒ»´ÎÅöײºó£¬ËÙ¶ÈÏòÉÏ£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬ÔÚÓëac±ß´¹Ö±µÄƽÃæÄÚ×öÔÈËÙÔ²ÖÜÔ˶¯£¬¾¹ýһȦºó£¬Óëab±ßÄÚ²àÅöײ£¬ÅöײºóˮƽÏòÓÒÔ˶¯£¬Óëbc±ß¶þ´ÎÅöײºó£¬ÔÚÓëac±ß´¹Ö±µÄƽÃæÄÚ×öÔÙ´ÎÔÈËÙÔ²ÖÜÔ˶¯£¬ÓÖ¾¹ýһȦºó£¬Óëb±ßÍâ²àÅöײ£¬Ë®Æ½ÏòÓÒÀ뿪´Å³¡£®
£¨3£©ÏÈ·ÖÎö³öÔ˶¯¹ì¼££¬ÔÙ·ÖÔÈËÙÖ±ÏßÔ˶¯ºÍÔÈËÙÔ²ÖÜÔ˶¯ÌÖÂÛ£¬¶ÔÓÚÔÈËÙÔ²ÖÜÔ˶¯£¬ÏȼÆËã°ë¾¶ºÍÖÜÆÚ£¬ÔÙ¸ù¾Ý¹ì¼£¼ÆË㣮
£¨2£©Á£×ÓÓë´Å³¡µÚÒ»´ÎÅöײºó£¬ËÙ¶ÈÏòÉÏ£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬ÔÚÓëac±ß´¹Ö±µÄƽÃæÄÚ×öÔÈËÙÔ²ÖÜÔ˶¯£¬¾¹ýһȦºó£¬Óëab±ßÄÚ²àÅöײ£¬ÅöײºóˮƽÏòÓÒÔ˶¯£¬Óëbc±ß¶þ´ÎÅöײºó£¬ÔÚÓëac±ß´¹Ö±µÄƽÃæÄÚ×öÔÙ´ÎÔÈËÙÔ²ÖÜÔ˶¯£¬ÓÖ¾¹ýһȦºó£¬Óëb±ßÍâ²àÅöײ£¬Ë®Æ½ÏòÓÒÀ뿪´Å³¡£®
£¨3£©ÏÈ·ÖÎö³öÔ˶¯¹ì¼££¬ÔÙ·ÖÔÈËÙÖ±ÏßÔ˶¯ºÍÔÈËÙÔ²ÖÜÔ˶¯ÌÖÂÛ£¬¶ÔÓÚÔÈËÙÔ²ÖÜÔ˶¯£¬ÏȼÆËã°ë¾¶ºÍÖÜÆÚ£¬ÔÙ¸ù¾Ý¹ì¼£¼ÆË㣮
½â´ð£º½â£º£¨1£©Á£×ÓÔÚÕý½»³¡ÖÐ×öÔÈËÙÔ˶¯£¬Eq=qv0B1£¬
Ôòv0=
Óɶ¯Äܶ¨ÀíµÃ qU1=
µÃ U1=
¼´¼ÓËÙµçѹΪ
£®
£¨2£©Á£×ÓÅöµ½abºóÒÔ´óСΪv0µÄËٶȴ¹Ö±´Å³¡·½ÏòÔ˶¯£¬ÔÚÂåÂØ×È×÷ÓÃÏÂÔÚ´¹Ö±Óڴų¡µÄƽÃæÄÚ×öÔÈËÙÔ²ÖÜÔ˶¯£¬×ª¹ýÒ»Öܺó´ïµ½abµÄϲ¿£®
£¨3£©ÓÉqv0B2=m
µÃ R=
=
ÓÉT=
µÃ T=
Á£×ÓÔڴų¡Öй²Åö°å2´Î£¬×öÔ²ÖÜÔ˶¯µÄʱ¼äΪ t1=2T=
×öÔ²ÖÜÔ˶¯µÄ·³ÌΪ s1=2?2¦ÐR=
ÔÚˮƽ·½ÏòÉÏÔ˶¯µÄ·³Ì s2=
R£¬
¾ÀúµÄʱ¼äΪt2=
=
ÔòÁ£×ÓÔÚPQ¡¢MNÖ®¼äµÄÇøÓòÖÐÔ˶¯µÄ×Üʱ¼ät=t1+t2=
+
×Ü·³Ìs=s1+s2=
+
L
¼´Á£×ÓÔÚPQ¡¢MNÖ®¼äµÄÇøÓòÖÐÔ˶¯µÄ×Üʱ¼äΪ
+
£¬×Ü·³ÌΪ
+
L£®
Ôòv0=
E |
B1 |
Óɶ¯Äܶ¨ÀíµÃ qU1=
1 |
2 |
mv | 2 0 |
µÃ U1=
mE2 | ||
2q
|
¼´¼ÓËÙµçѹΪ
mE2 | ||
2q
|
£¨2£©Á£×ÓÅöµ½abºóÒÔ´óСΪv0µÄËٶȴ¹Ö±´Å³¡·½ÏòÔ˶¯£¬ÔÚÂåÂØ×È×÷ÓÃÏÂÔÚ´¹Ö±Óڴų¡µÄƽÃæÄÚ×öÔÈËÙÔ²ÖÜÔ˶¯£¬×ª¹ýÒ»Öܺó´ïµ½abµÄϲ¿£®
£¨3£©ÓÉqv0B2=m
| ||
R |
µÃ R=
mv0 |
qB2 |
mE |
qB1B2 |
ÓÉT=
2¦ÐR |
v0 |
µÃ T=
2¦Ðm |
qB2 |
Á£×ÓÔڴų¡Öй²Åö°å2´Î£¬×öÔ²ÖÜÔ˶¯µÄʱ¼äΪ t1=2T=
4¦Ðm |
qB2 |
×öÔ²ÖÜÔ˶¯µÄ·³ÌΪ s1=2?2¦ÐR=
4¦ÐmE |
qB1B2 |
ÔÚˮƽ·½ÏòÉÏÔ˶¯µÄ·³Ì s2=
2 |
¾ÀúµÄʱ¼äΪt2=
S |
v0 |
| ||
E |
ÔòÁ£×ÓÔÚPQ¡¢MNÖ®¼äµÄÇøÓòÖÐÔ˶¯µÄ×Üʱ¼ät=t1+t2=
4¦Ðm |
qB2 |
| ||
E |
×Ü·³Ìs=s1+s2=
4¦ÐmE |
qB1B2 |
2 |
¼´Á£×ÓÔÚPQ¡¢MNÖ®¼äµÄÇøÓòÖÐÔ˶¯µÄ×Üʱ¼äΪ
4¦Ðm |
qB2 |
| ||
E |
4¦ÐmE |
qB1B2 |
2 |
µãÆÀ£º±¾ÌâÖеĸ´ºÏ³¡¾ßÓÐËÙ¶ÈÑ¡ÔñµÄ¹¦ÄÜ£¬½øÈë´Å³¡ÇøÓòºó£¬¸ù¾Ý¶¯Á¦Ñ§¹æÂÉÏÈÈ·¶¨Ô˶¯¹ì¼££¬ÔÙ½øÐмÆË㣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿