ÌâÄ¿ÄÚÈÝ
2£®Ð¡Ç¿Í¬Ñ§ÔÚ×ö¡°ÀûÓõ¥°Ú²âÖØÁ¦¼ÓËٶȡ±µÄʵÑéʱ£¬ÏȲâµÃ°ÚÏß³¤ÎªL£¬°ÚÇòÖ±¾¶ÎªD£¬È»ºóÓÃÃë±í¼Ç¼Á˵¥°Ún´ÎÈ«Õñ¶¯ËùÓõÄʱ¼äΪt£¬Ôò£¨1£©¸Ãͬѧ¼ÆËãÖØÁ¦¼ÓËٶȵıí´ïʽΪ£ºg=$\frac{4{¦Ð}^{2}{n}^{2}£¨L+r£©}{{t}^{2}}$£®
£¨2£©£¨¶àÑ¡£©¸Ãͬѧ²âµÃµÄgֵƫС£¬¿ÉÄܵÄÔÒòÊÇBC
A£®²â°ÚÏß³¤Ê±°ÚÏßÀµÃ¹ý½ô
B£®°ÚÏßÉ϶ËδÀι̵ØϵÓÚÐüµã£¬Õñ¶¯ÖгöÏÖËɶ¯£¬Ê¹°ÚÏß³¤¶ÈÔö¼ÓÁË
C£®¿ªÊ¼¼Æʱʱ£¬Ãë±íÌáÇ°°´ÏÂ
D£®ÊµÑéÖÐÎó½«49´ÎÈ«Õñ¶¯ÊýΪ50´Î
£¨3£©ÎªÁËÌá¸ßʵÑ龫¶È£¬ÔÚʵÑéÖпɸı伸´Î°ÚÏß³¤L²¢²â³öÏàÓ¦µÄÖÜÆÚT£¬´Ó¶øµÃ³öÒ»×é¶ÔÓ¦µÄLÓëTµÄÊý¾Ý£¬ÔÙÒÔLΪºá×ø±ê£®T2Ϊ×Ý×ø±ê½«ËùµÃÊý¾ÝÁ¬³ÉÖ±Ïߣ¬²¢ÇóµÃ¸ÃÖ±ÏßµÄбÂÊk£¬ÔòÖØÁ¦¼ÓËÙ¶Èg=$\frac{4{¦Ð}^{2}}{K}$£¨ÓÃk±íʾ£©£®ÕâÖÖ´¦ÀíʵÑéÊý¾ÝµÄ·½·¨µÃµ½µÄgÖµÓëÀíÂÛÖµÏà±ÈÏàµÈ£¨Ìî¡°Æ«´ó¡°¡°Æ«Ð¡¡°¡°ÏàµÈ¡°£©£®
·ÖÎö £¨1£©Çó³öµ¥°Ú°Ú³¤ÓëÖÜÆÚ£¬È»ºóÓɵ¥°ÚµÄÖÜÆÚ¹«Ê½Çó³öÖØÁ¦¼ÓËٶȵıí´ïʽ£»
£¨2£©¸ù¾ÝÖØÁ¦¼ÓËٶȵıí´ïʽ£¬·ÖÎöÖØÁ¦¼ÓËٶȲâÁ¿ÖµÆ«Ð¡µÄÔÒò
£¨3£©¸ù¾Ýµ¥°ÚµÄÖÜÆÚ¹«Ê½µÃ³öÖØÁ¦¼ÓËÙ¶ÈgµÄ±í´ïʽ£¬´Ó¶øÅжϳögÖµ¼°ÆäÆ«´óµÄÔÒò
½â´ð ½â£º£¨1£©µ¥°Ú°Ú³¤l=L+r£¬µ¥°ÚÖÜÆÚT=$\frac{t}{n}$£¬
Óɵ¥°ÚÖÜÆÚ¹«Ê½T=2¦Ð$\sqrt{\frac{l}{g}}$¿ÉµÃ£¬g=$\frac{4{¦Ð}^{2}l}{{T}^{2}}$=$\frac{4{¦Ð}^{2}{n}^{2}£¨L+r£©}{{t}^{2}}$
£¨2£©A¡¢²â°ÚÏß³¤Ê±°ÚÏßÀµÃ¹ý½ô£¬µ¥°Ú°Ú³¤Æ«´ól£¬ÓÉg=$\frac{4{¦Ð}^{2}l}{{T}^{2}}$¿ÉÖª£¬
ÖØÁ¦¼ÓËٶȵIJâÁ¿ÖµÆ«´ó£¬²»·ûºÏÌâÒ⣬¹ÊA´íÎó£»
B¡¢°ÚÏßÉ϶ËδÀι̵ØϵÓÚÐüµã£¬Õñ¶¯ÖгöÏÖËɶ¯£¬Ê¹°ÚÏß³¤¶ÈÔö¼ÓÁË£¬
¼ÆËãʱ£¬ÈÔ°´²âÁ¿Öµ¼ÆË㣬lƫС£¬ÓÉg=¿ÉÖª£¬ÖØÁ¦¼ÓËٶȵIJâÁ¿ÖµÆ«Ð¡£¬·ûºÏÌâÒ⣬¹ÊBÕýÈ·£»
C¡¢¿ªÊ¼¼Æʱ£¬Ãë±í¹ýÔç°´Ï£¬Ëù²âʱ¼ätÆ«´ó£¬ÓÉg=$\frac{4{¦Ð}^{2}l}{{T}^{2}}$=$\frac{4{¦Ð}^{2}{n}^{2}£¨L+r£©}{{t}^{2}}$¿ÉÖª£¬
ÖØÁ¦¼ÓËٶȵIJâÁ¿ÖµÆ«´ó£¬·ûºÏÌâÒ⣬¹ÊCÕýÈ·£»
D¡¢ÊµÑéÖÐÎó½«49´ÎÈ«Õñ¶¯¼ÇÊýΪ50´Î£¬NÆ«´ó£¬ÓÉg=$\frac{4{¦Ð}^{2}{n}^{2}£¨L+r£©}{{t}^{2}}$¿ÉÖª£¬
ÖØÁ¦¼ÓËٶȲâÁ¿ÖµÆ«´ó£¬²»·ûºÏÌâÒ⣬¹ÊD´íÎó£»
¹ÊÑ¡£ºBC
£¨3£©ÒÔlΪºá×ø±ê¡¢T2Ϊ×Ý×ø±ê½«ËùµÃÊý¾ÝÁ¬³ÉÖ±Ïߣ¬²¢ÇóµÃ¸ÃÖ±ÏßµÄбÂÊK£»Ôپݵ¥°ÚµÄÖÜÆÚ¹«Ê½T=2¦Ð$\sqrt{\frac{l}{g}}$µÃ£ºg=$\frac{4{¦Ð}^{2}l}{{T}^{2}}$£®ËùÒÔg=$\frac{4{¦Ð}^{2}}{K}$
¹Ê´ð°¸Îª£º£¨1£©$\frac{{4{¦Ð^2}{n^2}£¨L+\frac{D}{2}£©}}{t^2}$£¨2£©BC £¨3£©$\frac{{4{¦Ð^2}}}{K}$ÏàµÈ
µãÆÀ ±¾Ìâ¹Ø¼üÒªÕÆÎÕʵÑéµÄÔÀí£ºµ¥°ÚµÄÖÜÆÚ¹«Ê½T=2¦Ð$\sqrt{\frac{l}{g}}$ ÒªÄܸù¾ÝʵÑéÔÀí£¬·ÖÎöʵÑéÎó²î£®
¢Ù¼ÓËÙ¶ÈÏàͬ ¢ÚÂäµØʱµÄËÙ¶ÈÏàͬ ¢ÛÔËÐеÄʱ¼äÏàµÈ ¢ÜÂäµØʱµÄ¶¯ÄÜÏàµÈ£®
A£® | ¢Ù¢Û | B£® | ¢Ú¢Û | C£® | ¢Ù¢Ü | D£® | ¢Ú¢Ü |
A£® | Ê÷ľ¿ªÊ¼µ¹ÏÂʱ£¬Ê÷ÉҵĽÇËٶȽϴó£¬Ò×ÓÚÅÐ¶Ï | |
B£® | Ê÷ľ¿ªÊ¼µ¹ÏÂʱ£¬Ê÷ÉÒµÄÏßËٶȽϴó£¬Ò×ÓÚÅÐ¶Ï | |
C£® | Ê÷ľ¿ªÊ¼µ¹ÏÂʱ£¬Ê÷ÉÒµÄÏòÐļÓËٶȽÏС£¬Ò×ÓÚÅÐ¶Ï | |
D£® | ·¥Ä¾¹¤È˵ľÑéȱ·¦¿ÆѧÒÀ¾Ý |
A£® | ²´ËÉÁÁ°ßÊǹâµÄÆ«ÕñÏÖÏó | |
B£® | ÅÄÉã²£Á§³÷´°ÄÚµÄÎïƷʱ£¬ÍùÍùÔÚ¾µÍ·Ç°¼Ó×°Ò»¸öÆ«ÕñƬÒÔÔö¼Ó͸Éä¹âµÄÇ¿¶È | |
C£® | ¹âµ¼ÏËά´«²¥¹âÐźÅÀûÓÃÁ˹âµÄÈ«·´ÉäÔÀí | |
D£® | ·ÊÔíÅÝÔÚÑô¹âÕÕҫϳÊÏÖ³ö²ÊÉ«ÌõÎÆÕâÊǹâµÄÑÜÉäÏÖÏó |
A£® | BÎï¿éµÄ×î´óËÙ¶ÈΪ$\sqrt{\frac{14}{15}}$m/s | |
B£® | BÎï¿éµÄ×î´óËÙ¶ÈΪ$\sqrt{\frac{2}{3}}$m/s | |
C£® | BÎï¿éÑØбÃæÉÏÉýµÄ×î´óλÒÆΪ$\frac{8}{45}m$ | |
D£® | BÎï¿éÑØбÃæÉÏÉýµÄ×î´óλÒÆΪ$\frac{7}{45}m$ |
A£® | $\frac{{a}_{1}}{{a}_{2}}$=$\frac{r}{R}$ | B£® | $\frac{{a}_{1}}{{a}_{2}}$=$\frac{{R}^{2}}{{r}^{2}}$ | C£® | $\frac{{v}_{1}}{{v}_{2}}$=$\frac{r}{R}$ | D£® | $\frac{{v}_{1}}{{v}_{2}}$=$\sqrt{\frac{R}{r}}$ |