题目内容

如图,主动轮O1上两轮的半径分别为3r和r,从动轮O2的半径为2r,A、B、C分别为轮缘上的三点,设皮带不打滑,求A、B、C三点的角速度和线速度之比: =         .
=           .
2:2:1 3:1:1 .
考点:
专题:匀速圆周运动专题.
分析:靠传送带传动的点,线速度大小相等,共轴的点,角速度相等.B点和C点具有相同的线速度,A点和B点具有相同的角速度.根据v=rω,求出三点的角速度之比,线速度之比.
解答:解:B点和C点具有相同的线速度,根据ω=,知B、C两点的角速度之比等于半径之反比,所以ωB:ωC=rc:rb=2:1.而A点和B点具有相同的角速度,所以ωA:ωB:ωC=2:2:1..
根据v=rω,知A、B的线速度之比等于半径之比,所以vA:vB:=3:1.B、C线速度相等,所以vA:vB:vC=3:1:1.
故本题答案为:2:2:1,3:1:1.
点评:解决本题的关键掌握靠传送带传动的点,线速度大小相等,共轴的点,角速度相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网