题目内容

(2013?枣庄一模)如图所示,AB为半径R=0.8m的
14
光滑圆孤轨道,下端B恰与小车右墙平滑对接.小车的质量m=3kg、长度L=2.16m,其上表面距地面的髙度h=0.2m.现有 质量m=1kg的小滑块,由轨道顶端无初速度释放,滑到B端后冲上小车,当小车与滑块 达到共同速度时,小车被地面装置锁定.已知地面光滑,滑块与小车上表面间的动摩擦 因数u=0.3,取g=10m/s2o试求:
(1)搰块经过B端时,轨道对它支持力的大小
(2)小车被锁定时,其右端到轨道B端的距离.
(3)小车被锁定后,滑块继续沿小车上表面滑动.请判断:滑块能否从小车的左端滑出小 车?若不能,请计算小车被锁定后由于摩擦而产生的内能是多少?若能,请计算滑块的 落地点离小车左端的水平距离.
分析:(1)滑块从光滑圆弧轨道过程,只有重力做功,机械能守恒.经过B端时由重力和轨道的支持力的合力提供向心力,根据机械能守恒定律和牛顿第二定律求解轨道的支持力.
(2)根据牛顿第二定律分别求出滑块滑上小车后滑块和小车的加速度,由速度公式求出两者速度所经历的时间,再求解车被锁定时,车右端距轨道B端的距离;
(3)从车开始运动到被锁定的过程中,系统损失的机械能转化为内能,求出滑块相对于小车滑动的距离,锁定后,滑块继续在小车上滑动,假设能够抛出,由动能定理判断滑块动能损失再通过余下的位移的速度大小,看是否合乎题意,之后滑块做平抛运动,由平抛规律求解水平位移
解答:解:(1)设滑块经过B点的速度为v1,由机械能守恒定律得:
mgR=
1
2
mv
2
1

解得:v1=4m/s
设滑块经过B点时,轨道对其支持力为N,由牛顿第二定律得:
N-mg=
mv
2
1
R

解得:N=30N
(2)当滑块滑上小车后,设滑块和小车加速度分别为a1、a2,由牛顿第二定律得:
对滑块:-μmg=ma1
对小车:μmg=Ma2
解得:a1=-3m/s2a2=1m/s2
设经时间t1达到共同速度,其速度为v,由运动学公式得:
v=v1+a1t1
v=a2t1
解得:t1=1s,v=1m/s
设此时小车右端到B的距离为x1,由运动学公式得:
x1=
1
2
a2t
2
1
=0.5m
(3)设达到共同速度时,滑块的位移为x2,由运动学公式得:
x2=v1t1+
1
2
a1t
2
1

解得:x2=2.5m
此时,滑块在小车表面滑动距离为△x1,则:
△x1=x2-x1=2.5-0.5m=2m
小车被锁定后,假设滑块能从另一端滑下,滑块又在小车表面滑动距离为△x2,由几何关系得:
△x2=L-△x1=0.16m
设滑块滑下时的速度为v2,由动能定理得:
-μmg△x2=
1
2
mv
2
2
-
1
2
 
mv2
解得:
1
2
mv
2
2
=0.02J>0
所以滑块能从左端滑出,且滑出的速度为v2=0.2m/s
滑块滑出后,做平抛运动,设落地时间为t2,落点到小车左端距离为x3,则:
h=
1
2
gt
2
2

x3=v2t2
联立解得x3=0.04m
答:(1)搰块经过B端时,轨道对它支持力的大小为30N
(2)小车被锁定时,其右端到轨道B端的距离为0.5m
(3)滑块能从小车的左端滑出,落地点离小车左端的水平距离为0.04m
点评:涉及多运动过程分析,针对不同过程,建立清晰运动情景,明确遵守的物理规律,列方程求解,涉及相对运动的问题,所选的参考系要统一,一般选地球
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网