题目内容
【题目】如图,两质量均为m的小球,通过长为L的不可伸长轻绳水平相连,从h高处自由下落,下落过程中绳处于水平伸直状态,若下落时绳中点碰到水平放置的光滑钉子O,重力加速度为g,则
A. 小球从开始下落到刚到达最低点的过程中机械能不守恒
B. 从轻绳与钉子相碰到小球刚到达最低点过程中,重力的功率先减小后增大
C. 小球刚到达最低点时速度大小为
D. 小球刚到达最低点时绳中张力为
【答案】D
【解析】小球从开始下落到刚到达最低点的过程中只有重力做功,机械能守恒,故A错误;以向下为正方向,竖直方向合力为F=mg-Tsinθ,开始时θ很小,mg>Tsinθ,F>0,竖直方向加速度向下,vy增大,到快要相碰时,Tsinθ>mg,F<0,竖直方向加速度向上,vy减小,根据PG=mgvy可知重力的瞬时功率先增大后减小,故B错误;从最高点到小球刚到达最低点的过程中运用动能定理得: mv2=mg(+h),解得:v=,故C错误;根据向心加速度公式有: ,根据牛顿第二定律得F-mg=ma,解得F=+3mg,故D正确.故选D.
练习册系列答案
相关题目