题目内容
【题目】传送带被广泛应用与各行各业,由于不同的物体与传送带之间的动摩擦因数不同,物体在传送带上的运动情况也有所不同。如图所示,一倾斜放置的传送带与水平面的倾角,在电动机的带动下以v=2m/s的速率顺时针方向匀速运行。M、N为传送带的两个端点,MN两点间的距离L=7m。N端有一离传送带很近的挡板P可将传送带上的物块挡住。在传送带上的O处先后由静止释放金属块A和木块B,金属块与木块质量均为1kg,且均可视为质点,OM间距离LOM=3m。g取10m/s2,传送带与轮子间无相对滑动,不计轮轴处的摩擦。
(1)金属块A由静止释放后沿传送带向上运动,经过到达M端,求金属块与传送带间的动摩擦因数。
(2)木块B由静止释放后沿传送带向下运动,并与挡板P发生碰撞。已知碰撞时间极短,木块B与挡板P碰撞前后速度大小不变,木块B与传送带间的动摩擦因数。求:
a、与挡板P第一次碰撞后,木块B所达到的最高位置与挡板P的距离;
b、经过足够长时间,电动机的输出功率恒定,求此时电动机的输出功率。
【答案】(1)1 (2)a、1m b、8w
【解析】试题分析:(1)金属块A在传送带方向上受摩擦力和重力的下滑分力,先做匀加速运动,并设其速度能达到传送带的速度v=2m/s,然后做匀速运动,达到M点。
金属块由O运动到M有即①
且 t1+t2=t
即 t1+t2=2 ②
v=at1即 2=at1③
根据牛顿第二定律有④
由①②③式解得 t1=1s<t=2s 符合题设要求,加速度a=2m/s2
由①式解得金属块与传送带间的动摩擦因数μ1=1
(2)a.由静止释放后,木块B沿传送带向下做匀加速运动,其加速度为a1,运动距离LON=4m,第一次与P碰撞前的速度为v1
与挡板P第一次碰撞后,木块B以速度v1被反弹,先沿传送带向上以加速度a2做匀减速运动直到速度为v,此过程运动距离为s1;之后以加速度a1继续做匀减速运动直到速度为0,此时上升到最高点,此过程运动距离为s2。
因此与挡板P第一次碰撞后,木块B所达到的最高位置与挡板P的距离
b.木块B上升到最高点后,沿传送带以加速度a1向下做匀加速运动,与挡板P发生第二次碰撞,碰撞前的速度为v2
与挡板第二次碰撞后,木块B以速度v2被反弹,先沿传送带向上以加速度a2做匀减速运动直到速度为v,此过程运动距离为s3;之后以加速度a1继续做匀减速运动直到速度为0,此时上升到最高点,此过程运动距离为s4。
木块B上升到最高点后,沿传送带以加速度a1向下做匀加速运动,与挡板P发生第三次碰撞,碰撞前的速度为v3
与挡板第三次碰撞后,木块B以速度v3被反弹,先沿传送带向上以加速度a2做匀减速运动直到速度为v,此过程运动距离为s5;之后以加速度a1继续做匀减速运动直到速度为0,此时上升到最高点,此过程运动距离为s6。
以此类推,经过多次碰撞后木块B以2m/s的速度被反弹,在距N点1m的范围内不断以加速度a2做向上的减速运动和向下的加速运动。
木块B对传送带有一与传送带运动方向相反的阻力
故电动机的输出功率
解得P8W