题目内容
【题目】质量相等的A、B两物体放在同一水平面上,分别受到水平拉力、的作用而从静止开始做匀加速直线运动,经过时间和4两物体速度分别达到2和时,分别撤去和,以后物体继续做匀减速直线运动直至停止。两物体速度随时间变化的图线如图所示。设和对A、B的冲量分别为和, 和对A、B做的功分别为和,则下列结论正确的是
A. =12∶5, =6∶5 B. =6∶5, =3∶5
C. =3∶5, =6∶5 D. =3∶5, =12∶5
【答案】C
【解析】从图象可知,两物块匀减速运动的加速度大小之都为a=,根据牛顿第二定律,匀减速运动中有f=ma,则摩擦力大小都为f=m.根据图象知,匀加速运动的加速度分别为: , ,根据牛顿第二定律,匀加速运动中有F-f=ma,则F1=,F2=,F1和F2的大小之比为12:5.则冲量之比为:I1:I2=;图线与时间轴所围成的面积表示运动的位移,则位移之比为6:5;由图看出,撤去拉力后两图象平行,说明加速度,由牛顿第二定律分析则知加速度a=μg,说明两物体与地面的动摩擦因数相等,则两物体所受的摩擦力大小相等,设为f,对全过程运用动能定理得:W1-fs1=0,W2-fs2=0,得:W1=fs1,W2=fs2,由上可知,整个运动过程中F1和F2做功之比为6:5;故C正确,ABD错误.故选C.
练习册系列答案
相关题目