题目内容

15.现要通过如图所示的实验装置验证机械能守恒定律:水平桌面上固定一斜面,斜面上的A点处放有一带长方形遮光片的滑块,滑块和遮光片的总质量为M,遮光片较窄且宽度为b,两条长边与导轨垂直.已知将滑块从A点由静止释放,遮光片经过斜面上的B处的光电门时间为t(t极小),A到斜面底端C的距离为d,A与C的高度差为h,当地的重力加速度为g.
①滑块经过B处时的速度大小为$\frac{b}{t}$;
②将滑块从A点由静止释放,若要验证A到B的过程中滑块及遮光片整体的机械能是否守恒,还需要测量一个物理量,这个物理量是AB之间的距离L,用测得量和已知量表示验证机械能守恒的关系式是MgL$\frac{h}{d}$=$\frac{1}{2}M$$\frac{b^2}{t^2}$.

分析 根据极短时间内的平均速度等于瞬时速度求出滑块经过B点的速度大小.抓住重力势能的减小量等于动能的增加量得出验证的表达式,从而确定还需测量的物理量.

解答 解:①根据极短时间内的平均速度等于瞬时速度知,滑块经过B点的速度为:$v=\frac{b}{t}$.
②重力势能的减小量为:△Ep=MgL$\frac{h}{d}$,动能的增加量为:$△{E}_{k}=\frac{1}{2}M{v}^{2}$=$\frac{1}{2}M$$\frac{b^2}{t^2}$.则验证的表达式为:MgL$\frac{h}{d}$=$\frac{1}{2}M$$\frac{b^2}{t^2}$.
可知还需测量的物理量为AB之间的距离L.
故答案为:①$\frac{b}{t}$,②AB之间的距离L,MgL$\frac{h}{d}$=$\frac{1}{2}M$$\frac{b^2}{t^2}$.

点评 解决本题的关键知道实验的原理,抓住动能的增加量等于重力势能的减小量得出机械能守恒的表达式是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网