题目内容
【题目】如图所示,半径R=0.2 m的光滑四分之一圆轨道MN竖直固定放置,M与圆心O等高,末端N与一长L=0.8m的水平传送带相切,水平衔接部分摩擦不计,传动轮(轮半径很小)作顺时针转动,带动传送带以恒定的速度ν0运动。传送带离地面的高度h=1.25m,其右侧地面上有一直径D=0.5m的圆形洞,洞口最左端的A点离传送带右端的水平距离S =1m, B点在洞口的最右端。现使质量为m=0.5kg的小物块从M点由静止开始释放,经过传送带后做平抛运动,最终落入洞中,传送带与小物块之间的动摩擦因数μ=0.5。 g取10m/s2。求:
(1)小物块到达圆轨道末端N时对轨道的压力;
(2)若ν0=3m/s,求物块在传送带上运动的时间;
(3)若要使小物块能落入洞中,求ν0应满足的条件。
【答案】(1)15N(2)0.3s(3)3m/s>ν0>2m/s
【解析】
试题分析:(1)设物块滑到圆轨道末端速度ν1,根据机械能守恒定律得:
设物块在轨道末端所受支持力的大小为F,
由牛顿第二定律得:
得:F=15N
由牛顿第三定律,对轨道压力大小为15N,方向竖直向下
(2)物块在传送带上加速运动时,由μmg=ma , 得a= μg=m/s2
加速到与传送带达到同速所需要的时间=0.2s
位移=0.5m
匀速时间 =0.1s
故 =0.3s
(3)物块由传送带右端平抛
恰好落到A点 得ν2=2m/s
恰好落到B点 D+s=ν3t 得ν3=3m/s
故ν0应满足的条件是3m/s>ν0>2m/s
练习册系列答案
相关题目