题目内容
【题目】一轻质弹簧,两端连接两滑块A和B,已知mA=0.99kg,mB=3kg,放在光滑水平桌面上,开始时弹簧处于原长.现滑块A被水平飞来的质量为mC=10g,速度为400m/s的子弹击中,且没有穿出,如图所示,试求:
(1)子弹击中A的瞬间A和B的速度
(2)以后运动过程中弹簧的最大弹性势能
(3)B可获得的最大动能.
【答案】
(1)解:子弹击中滑块A的过程,子弹与滑块A组成的系统动量守恒有:
mCv0=(mC+mA)vA
解得:vA=4m/s
子弹与A作用过程时间极短,B没有参与,速度仍为零,故:vb=0.
故子弹击中A的瞬间A和B的速度分别为:vA=4m/s,vb=0.
(2)解:对子弹、滑块A、B和弹簧组成的系统,A、B速度相等时弹性势能最大.
根据动量守恒定律和功能关系可得:
mCv0=(mC+mA+mB)v
由此解得:v=1m/s
根据功能关系可得:
=6 J
故弹簧的最大弹性势能为6J.
(3)解:设B动能最大时的速度为vB′,A的速度为vA′,则
(mC+mA)vA=(mC+mA)vA′+mBvB′
当弹簧恢复原长时,B的动能最大,根据功能关系有:
=
解得: =2m/s
B获得的最大动能:
J.
故B可获得的最大动能为:EKB=6J.
【解析】(1)子弹击中A的瞬间,子弹和A组成的系统水平方向动量守恒,据此可列方程求解A的速度,此过程时间极短,B没有参与,速度仍为零.(2)以子弹、滑块A、B和弹簧组成的系统为研究对象,当三者速度相等时,系统损失动能最大则弹性势能最,根据动量守恒和功能关系可正确解答.(3)当弹簧恢复原长时B的动能最大,整个系统相互作用过程中动量守恒,根据功能关系可求出结果.
练习册系列答案
相关题目