题目内容
(15分)汽车从静止开始以a=1 m/s2的加速度前进,某人在车后s0=25 m处同时开始以6 m/s的速度匀速追汽车.
(1)经过多长时间汽车的速度达到6 m/s;
(2)试通过计算判断人能否追上车;
(3)若人能追上车,则求经过多长时间人才追上车;若人不能追上车,求人、车间的最小距离.
【答案】
(1) t=6 s (2)可见人追不上(3) 7 m
【解析】(1)设车历时t其速度达到v1=6 m/s,则有
t= t=6 s .3分
(2)在t=6 s之前,人的速度大于车的速度,人逐渐靠近车,t=6 s之后,人的速度小于车的速度,人逐渐远离车,在t=6 s时,人车之间的距离为最近,若此时人未追上车就再也追不上车了.t内
s人=v1t s人=36 m 3分
s车=at2
s车=18 m 3分
s车+s0=18+25 m=43 m
s人小于(s车+s0),可见人追不上. 3分
(3)t=6 s时,人车距离最近,Δs=s车+s0-s人 Δs=(18+25-36)m=7 m. 3分
本题考查追击问题,当追上汽车时位移相同,运动时间相同,由匀速运动规律和匀变速直线运动的公式求解,当两者速度相等时距离最小,由此可求得第二问
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目