题目内容
【题目】如图所示,在斜面上O点先后以v0和2v0的速度水平抛出A、B两小球,则从抛出至第一次着地,两小球的水平位移大小之比可能为( )
A. 1:2 B. 1:3 C. 1:4 D. 1:5
【答案】ABC
【解析】试题分析:抛出的小球做平抛运动,分都落在斜面上,一个在斜面上一个在水平面上,和两个都落在水平面来计算.
解:当A、B两个小球都能落到水平面上时,由于两者的下落高度相同,运动的时间相同,则水平位移之比为初速度之比,为1:2,所以A正确;
当A、B都落在斜面的时候,它们的竖直位移和水平位移的比值即为斜面夹角的正切值,
即=tanθ,
整理可得,时间t=,
两次平抛的初速度分别为υ0和2υ0,
所以运动的时间之比为==.
两小球的水平位移大小之比为xA:xB=v0tA:2v0tB=1:4,所以C正确.
当只有A落在斜面上的时候,A、B水平位移之比在1:4和1:2之间,所以B正确.
故选ABC.
练习册系列答案
相关题目