题目内容

(2013?黄冈一模)如图所示,一砂袋用无弹性轻细绳悬于O点.开始时砂袋处于静止状态,此后用弹丸以水平速度击中砂袋后均未穿出.第一次弹丸的速度为v0,打入砂袋后二者共同摆动的最大摆角为θ(θ<90°),当其第一次返回图示位置时,第二粒弹丸以另一水平速度v又击中砂袋,使砂袋向右摆动且最大摆角仍为θ.若弹丸质量均为m,砂袋质量为5m,弹丸和砂袋形状大小忽略不计,求两粒弹丸的水平速度之比v0/v为多少?
分析:子弹射入沙袋过程,系统水平方向不受外力,系统的动量守恒.子弹打入沙袋后二者共同摆动的过程机械能守恒,当他们第1次返回图示位置时,速度大小等于子弹射入沙袋后瞬间的速度,根据动量守恒定律机械能守恒结合求解.
解答:解:弹丸击中砂袋瞬间,系统水平方向不受外力,动量守恒,设碰后弹丸和砂袋的共同速度为v1,细绳长为L,根据动量守恒定律有mv0=(m+5m)v1
砂袋摆动过程中只有重力做功,机械能守恒,所以
 
1
2
?6m
v
2
1
=6mgL(1-cosθ)
设第二粒弹丸击中砂袋后弹丸和砂袋的共同速度为v2,同理有:mv-(m+5m)v1=(m+6m)v2
 
1
2
?7m
v
2
2
=7mgL(1-cosθ),
联解上述方程得
v0
v
=
6
13

答:两粒弹丸的水平速度之比
v0
v
6
13
点评:本题中物理过程较多,关键先要正确把握每个过程的物理规律,根据动量守恒定律进行求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网